

ANNEX: REGIONAL FACTSHEETS

ENERGY TRANSFORMATION

• EAST ASIA	
• SOUTHEAST ASIA	
• REST OF ASIA	
• EUROPEAN UNION	
• REST OF EUROPE	
LATIN AMERICA AND THE CARIBBEAN	42
MIDDLE EAST AND NORTH AFRICA	50
NORTH AMERICA	58
• OCEANIA	
SUB-SAHARAN AFRICA	

ENERGY TRANSFORMATION **EAST ASIA**

Regional analysis covers five countries:

China

- Japan
- Democratic People's
- Republic of Korea (DPRK)
- Mongolia
- Republic of Korea (ROK)

STATUS/CHARACTERISTICS AND NEEDS:

Current:	
2050	
outlook:	

Around the global average (10.9).

Swift development; PES: CAGR = 3.4%

IRENA analysis based on E3ME.

Source: Access to electricity, 2017 values (World Bank Group, 2019a), access to clean cooking, 2016 values (World Bank Group, 2019b), TFEC, 2017 values (IEA, 2019).

Fossil fuel net import	Current status:	Supply and demand roughly in balance ; China is world's largest coal producer; ROK and Japan rely heavily on fossil-fuel imports.
high	2050 outlook:	 Air pollution and resource challenges; vast untapped renewable energy potential. PES: The total generation (est. 15993 TWh) represents 36% of overall renewable power potential.

Note: Current status, IRENA analysis based on proportion of net imports of fossil fuels in TPES, 2017 values (IEA, 2019). 2050 outlook, IRENA analysis and potential based on Deng *et al.* (2015).

Energy-intensive industries (% in global consumption)	Current status:	Over half of global metal and minerals, chemicals, and iron and steel energy demand is concentrated in the region.			
2017	2050 outlook:	Deploy a mix of emerging clean technologies and carbon capture solutions .			

IRENA analysis based on 2017 values (IEA, 2019).

Note: 2050 values based on IRENA analysis and historical data based on Global Carbon Atlas (2019).

China: Rapid, mainly coal-fueled development accelerating since 2010, reducing poverty; death rate from air pollution now 2nd highest (after India's); new regulations cut air pollution by 20% in 2015-17.

IRENA analysis based on PM 2.5 concentration, 2016 and 2017 values (WHO, 2019).

Electricity prices and renewables costs

Electricity price:

Mid-range (for households and industries) compared to other regions.

Onshore wind around G20 average (USD 0.05/kWh). Solar PV below G20 average (USD 0.096/kWh).

Renewable power costs:

Auction prices:

Lower than other regions; China's largest solar auction (1 GW new capacity) achieved lowest price (USD 0.077/kWh) in 2017.

LCOE based on IRENA (2019a) and electricity prices based on Global Petrol Prices (2019).

Note: The LCOE data is for projects commissioned in 2018. Real weighted average cost of capital (WACC) is 7.5% for OECD countries and China and 10% for the rest of the world.

ENERGY TRANSFORMATION: KEY BENEFITS

4

Φ

 CO_2

ENERGY	TRANSFOR	MATION	ROADMAP	TO 2050
--------	----------	--------	---------	---------

		Where we are heading				g Where we need to be			
East Asia	2017	2030 (PES)	2040 (PES)	2050 (PES)	2030 (TES)	2040 (TES)	2050 (TES)		
Energy (EJ)									
Supply (TPES)	159	185	172	159	160	138	115		
Consumption (TFEC)	102	114	107	100	105	97	89		
Renewables shares (modern)									
Supply (TPES)	7%	17%	27%	39%	27%	44%	65%		
Consumption (TFEC)	8%	20%	30%	43%	31%	49%	70%		
Power generation	23%	42%	59%	73%	60%	77%	90%		
Electricity share in final energy c	onsumpti	ion							
End-use consumption	25%	33%	40%	48%	37%	47%	58%		
Industry	26%	39%	45%	53%	41%	51%	65%		
Transport	3%	7%	20%	33%	14%	30%	46%		
Buildings	32%	44%	48%	52%	45%	51%	57%		
Renewable installed capacity (G	N)								
Bioenergy	14	74	74	74	82	84	87		
Hydropower	349	484	533	582	490	539	588		
Solar PV	186	1175	1734	2305	1644	2396	3118		
Wind	169	706	1407	2106	1263	1990	269		
Biofuels									
Liquid biofuels (billions of litres per year)	5	31	32	33	36	36	37		
Energy consumption per capita	(GJ/cap	ita)							
Consumption (TFEC) per capita	62	67	64	62	62	58	55		
CO ₂ emissions (energy-related)									
Annual level (Gt CO ₂ /yr)	11.2	10.3	7.8	5.4	8.4	5.3	2.2		
Reduction vs. today	NA	-8%	-30%	-52%	-25%	-53%	-80%		

	Where we are heading	Where we need to be
East Asia	Planned Energy Scenario 2016 - 2050 (PES)	Transforming Energy Scenario 2016-2050 (TES)
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Energy system investments (average annual, 2016-50) USD billion/year

Power	314	386
– Renewable	172	246
– Non-renewable	63	35
- Power grids and system flexibility	80	105
Industry (RE + EE)	25	35
Transport (electrification + EE)	101	114
Buildings (RE + EE)	133	196
Biofuel supply	5.4	13.4
Renewable hydrogen – electrolysers	2.2	5.9

Note: RE = renewable energy; EE = energy efficiency

The findings in this report consider targets and developments as of April 2019. The wind and solar PV capacities in the Transforming Energy Scenario in 2030 in this report are slightly higher than the estimates presented in IRENA's reports (IRENA, 2019b; 2019c) which consider developments as of the third quarter of 2019.

SOCIO-ECONOMIC OUTLOOK TO 2050

🔍 East Asia	2019e	2030	2050	
Population (thousands) region-wide	1621179	1627194	1514571	
GDP (USD 2015)				
GDP (million): PES	17 550 968	25 739 253	46 369 936	
GDP (million): TES	18 075 537	26 577 659	47 521 377	
GDP changes (million): TES vs. PES	524 569	838 406	1151441	
GDP changes (%): TES vs. PES	3	3.3	2.5	
Per capita GDP (thousand): PES	10.8	15.8	30.6	
Per capita GDP (thousand): TES	11.1	16.3	31.4	
Employment				
Economy-wide employment (thousands)				
Employment: PES	997 554	979 427	839204	
Employment: TES	1001937	984 319	839750	
Employment changes: TES vs. PES	4 382	4 892	545	
Employment changes (%): TES vs. PES	0.44%	0.50%	0.06%	

East Asia

East Asia	2017	2030 (PES)	2050 (PES)	2030 (TES)	2050 (TES)

Energy sector jobs (thousands)

Nuclear power	139	222	254	215	185
Fossil fuels	9 952	10 170	7 765	8 765	4800
Renewables	4 617	8 4 9 4	12 194	10 591	15 007
Energy efficiency	1912	7 521	7 748	9672	8 852
Power grids and energy flexibility	2 3 3 9	4 406	5 3 3 2	4 746	5673
Total	18 959	30 813	33 293	33 989	34 517
Energy jobs in economy-wide employment (%)		3.1%	4.0%	3.5%	4.1%

Renewable energy jobs (thousands)

Bioenergy	414	1069	801	1185	1005
Solar	3 211	5 571	7630	6 725	9404
Hydropower	469	621	716	604	688
Wind	519	1225	2 999	2 0 6 1	3844
Geothermal	4	7	46	12	50
Ocean	0	1	2	4	15
Total	4 617	8 494	12 194	10 591	15 007
Renewable energy jobs in energy-sector employment (%)		27.6%	36.6%	31.2%	43.5%

Job differential in 2050 (thousands) TES vs. PES

Economy-wide	545
Changes in conventional energy (A)	-3034
Changes in transition related technologies (B)	4 257
Net energy sector jobs (A+B)	1223

2050

Technology jobs (thousands)		Segment valu (thousand	e chain ds)	Occupational requirements (thousands)		
Solar PV	7896	Construction & installation	5894	Workers and technicians	9 972	
Solar water heaters (SWH)	1437	Manufacturing	4236	Experts	1475	
Onshore wind	3144	Operation and maintenance	3 098	Engineers and higher degrees	1275	
Offshore wind	699	Biofuel supply	-	Marketing and administrative	505	
Geothermal	50					
Total	13 228		13 228		13 228	

Jobs in 2050: TES / East Asia

Welfare improvement	(%):
TES vs. PES	

Indicator				
Economic	0.6	0.4		
Social	3.8	7.4		
Environmental	1.9	4		
Total	6.3	11.8		

2030

REFERENCES:

Deng, Y., Haigh, M., Pouwels, W., Ramaekers, L., Brandsma, R., Schimschar, S., Grözinger, J. & de Jager, D. (2015), *Quantifying a realistic, worldwide wind and solar electricity supply*, Global Environmental Change 31, 239-52, https://doi.org/10.1016/j.gloenvcha.2015.01.005. Global Carbon Atlas (2019), *Global Carbon Atlas – CO₂ emissions*, https://doi.org/10.5194/essd-11-1675-2019. Global Petrol Prices (2019), *Electricity prices around the world*, www.globalpetrolprices.com/electricity_prices/ (accessed 5 March 2020).

IEA (2019), IEA Beyond 20/20 - 2019 edition, International Energy Agency, Paris.

IRENA (2019a), Renewable Cost Database, 2019.

IRENA (2019b), Future of solar photovoltaic – Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

IRENA (2019c), Future of wind - Deployment, investment, technology, grid integration

and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

WHO (2019), *WHO Global Ambient Air Quality Database* (update 2018), World Health Organization, www.who.int/airpollution/data/cities/en/ (accessed 5 March 2020).

World Bank Group (2019a), Access to electricity (% of population), World Bank Group.

World Bank Group (2019b), Access to clean fuels and technologies for cooking (% of population), World Bank Group.

ENERGY TRANSFORMATION SOUTHEAST ASIA

Regional analysis covers the 10 member states of the Association of Southeast Asian Nations:

• Brunei Darussalam

Cambodia

Indonesia

- Lao People's Democratic Republic
- MalaysiaMyanmar

Philippines

- Singapore
- Thailand
- Viet Nam

STATUS/CHARACTERISTICS AND NEEDS:

Current: 2050 outlook:

8.5% of global population.
Highest regional share in Indonesia (41%) followed by Philippines (16%) and Viet Nam (15%).
Average 0.5% per year increase to 749 million, or 8% of global population.

IRENA analysis based on E3ME.

Current: Well bel 2050 Rapid de outlook: PES: C

Well below the global average (10.9).

Rapid development; PES: CAGR = 4.2%

IRENA analysis based on E3ME.

10

Source: Access to electricity, 2017 values (World Bank Group, 2019a), access to clean cooking, 2016 values (World Bank Group, 2019b), TFEC, 2017 values (IEA, 2019).

Fossil fuel net import	Current status:	Indonesia: Large coal deposits; Malaysia: Moderate oil and gas reserves.
	2050 outlook:	Region shifting to net fossil-fuel imports; Vast untapped renewable energy potential. > PES: The total generation (est. 3664 TWh)
medium		represents 25% of overall renewable power potential.

Note: Current status, IRENA analysis based on proportion of net imports of fossil fuels in TPES, 2017 values (IEA, 2019). 2050 outlook, IRENA analysis and potential based on Deng *et al.* (2015).

Energy-intensive industries (% in global consumption)	Current status:	Regional energy use ranges from 1% of global levels in some industries up to 9% (region's highest share) in food and tobacco .
4%	2050 outlook:	The region becoming more industrialised; Need for emissions reductions and specific solution to decarbonize in challenging sectors such as heavy industry.
2017		

IRENA analysis based on 2017 values (IEA, 2019).

Note: 2050 values based on IRENA analysis and historical data based on Global Carbon Atlas (2019).

Unhealthy air pollution levels in 22% of region's cities and moderately unhealthy levels in most of rest; Dataset (limited to 35 cities) points to poor and deterioriating urban air quality across region.

IRENA analysis based on PM 2.5 concentration, 2016 and 2017 values (WHO, 2019).

Electricity prices and renewables costs

Electricity price: USD 0.10-0.11/kWh average across region (lower compared to other regoins). Renewables cost and auctions:

Cost-competitiveness of renewables increasingly reflected in region;

Viet Nam has auctioned 5.5 GW (2019), region's largest installed solar PV capacity.

Southeast Asia

LCOE based on IRENA (2019a) and electricity prices based on Global Petrol Prices (2019). Note: The LCOE data is for projects commissioned in 2018. Real weighted average cost of capital (WACC) is 7.5% for OECD countries and China and 10% for the rest of the world.

ENERGY

SECURITY

- Diversified energy supply
- Lower system costs
- Green industrial revolution

- Low-cost renewable energy use
- Increased regional interconnections
- Increasingly electrified transport

SUSTAINABLE DEVELOPMENT

- Economic growth driven by trade gains
- High growth in renewable energy jobs
- Better air quality and improved health
- Improved education and empowered citizens

4

ENERGY	TRANSFORM	ATION ROA	ADMAP TO	C 2050
--------	-----------	-----------	----------	--------

	Where we are heading				g Where we need to be		
Southeast Asia	2017	2030	2040	2050	2030	2040	2050
		(FL3)	(FL3)	(FL3)		(123)	
Energy (EJ)							
Supply (TPES)	28	40	50	60	35	42	46
Consumption (TFEC)	18	21	27	31	21	25	28
Renewables shares (modern)							
Supply (TPES)	13%	28%	29%	31%	41%	59%	75%
Consumption (TFEC)	12%	16%	19%	22%	27%	48%	68%
Power generation	20%	31%	34%	37%	53%	73%	85%
Electricity share in final energy co	onsumpti	on					
End-use consumption	18%	22%	26%	31%	20%	32%	42%
Industry	22%	16%	19%	23%	16%	22%	27%
Transport	0.2%	1%	2%	3%	3%	12%	23%
Buildings	30%	68%	77%	83%	63%	82%	91%
Renewable installed capacity (GV	V)						
Bioenergy	7	26	32	37	66	111	176
Hydropower	39	41	51	70	71	81	100
Solar PV	4	54	109	198	106	399	647
Wind	1	5	8	11	13	22	32
Biofuels							
Liquid biofuels (billions of litres per year)	7	34	39	62	47	57	93
Energy consumption per capita (GJ/capita)							
Consumption (TFEC) per capita	28	29	35	40	29	33	35
CO ₂ emissions (energy-related)							
Annual level (Gt CO ₂ /yr)	1.4	2	2.6	2.9	1.6	1.3	0.8
Reduction vs. today	NA	45%	81%	106%	15%	-10%	-46%

)2

	Where we are heading	Where we need to be	
Southeast Asia	Planned Energy Scenario 2016 - 2050 (PES)	Transforming Energy Scenario 2016-2050 (TES)	

Energy system investments (average annual, 2016-50) USD billion/year

Power	39	66
– Renewable	12	39
– Non-renewable	13	5
- Power grids and system flexibility	15	22
Industry (RE + EE)	7	13
Transport (electrification + EE)	10	20
Buildings (RE + EE)	27	40
Biofuel supply	3.2	6.9
Renewable hydrogen – electrolysers	0	0

Note: RE = renewable energy; EE = energy efficiency

The findings in this report consider targets and developments as of April 2019. The wind and solar PV capacities in the Transforming Energy Scenario in 2030 in this report are slightly higher than the estimates presented in IRENA's reports (IRENA, 2019b; 2019c) which consider developments as of the third quarter of 2019.

SOCIO-ECONOMIC OUTLOOK TO 2050

Southeast Asia	2019e	2030	2050
Population (thousands) region-wide	647 605	700 587	749 019
GDP (USD 2015)			
GDP (million): PES	2 465 787	3 981 401	10 065 561
GDP (million): TES	2 495 821	4 155 4 42	10 360 523
GDP changes (million): TES vs. PES	30 034	174 041	294 962
GDP changes (%): TES vs. PES	1.2	4.4	2.9
Per capita GDP (thousand): PES	3.8	5.7	13.4
Per capita GDP (thousand): TES	3.9	5.9	13.8
Employment			
Economy-wide employment (thousands)			
Employment: PES	319 692	354 865	369 980
Employment: TES	319 792	354 512	369664
Employment changes: TES vs. PES	101	-353	-316
Employment changes (%): TES vs. PES	0.03%	-0.10%	-0.09%

Southeast Asia	2017	2030 (PES)	2050 (PES)	2030 (TES)	2050 (TES)		
Energy sector jobs (thousands)							
Nuclear power	1	5	10	10	20		
Fossil fuels	2000	2682	2764	2647	2 429		
Renewables	779	1681	2 028	3 780	6720		
Energy efficiency	1005	645	564	978	703		
Power grids and energy flexibility	308	474	451	501	638		
Total	4 092.7	5 487.5	5 817.2	7 915.2	10 509.4		
Energy jobs in economy-wide employment (%)		1.5%	1.6%	2.2%	2.8%		

Renewable energy jobs (thousands)

Bioenergy	502	1302	1457	2 752	4 412
Solar	91	186	372	628	1882
Hydropower	155	139	154	285	283
Wind	15	18	19	40	45
Geothermal	15	35	27	56	63
Ocean	0	0	0	18	34
Total	779	1681	2 0 2 8	3 780	6 720
Renewable energy jobs in energy-sector employment (%)		30.6%	34.9%	47.8%	63.9%

Job differential in 2050 (thousands) TES vs. PES

Economy-wide	-316
Changes in conventional energy (A)	-325
Changes in transition related technologies (B)	5 018
Net jobs (A+B)	4692

7.7

3.5

11.2

	-					
Technology jobs (thousands)		Segment value (thousand	e chain ls)	Occupational requirements (thousands)		
Solar PV	1560	Construction & installation	805	Workers and technicians	1 515	
Solar water heaters (SWH)	322	Manufacturing	988	Experts	206	
Onshore wind	45	Operation and maintenance	198	Engineers and higher degrees	176	
Offshore wind	-	Biofuel supply	-	Marketing and administrative	94	
Geothermal	63					
Total	1991		1991		1991	
Welfare improve TES vs. PES	ment (%):	2030		2050		
Indicator						
Economic		0.1		0.0		

Jobs in 2050: TES / Southeast Asia

_		

Social

Total

REFERENCES:

Deng, Y., Haigh, M., Pouwels, W., Ramaekers, L., Brandsma, R., Schimschar, S., Grözinger, J. & de Jager, D. (2015), *Quantifying a realistic, worldwide wind and solar electricity supply*, Global Environmental Change 31, 239-52, https://doi.org/10.1016/j.gloenvcha.2015.01.005. Global Carbon Atlas (2019), *Global Carbon Atlas – CO₂ emissions*, https://doi.org/10.5194/essd-11-1675-2019. Global Petrol Prices (2019), *Electricity prices around the world*,

1.5

1.6

3.2

www.globalpetrolprices.com/electricity_prices/ (accessed 5 March 2020).

IEA (2019), IEA Beyond 20/20 - 2019 edition, International Energy Agency, Paris.

IRENA (2019a), Renewable Cost Database, 2019.

IRENA (2019b), Future of solar photovoltaic – Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

IRENA (2019c), Future of wind - Deployment, investment, technology, grid integration

and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

WHO (2019), WHO Global Ambient Air Quality Database (update 2018), World Health Organization, www.who.int/airpollution/data/cities/en/ (accessed 5 March 2020).

World Bank Group (2019a), Access to electricity (% of population), World Bank Group.

World Bank Group (2019b), Access to clean fuels and technologies for cooking (% of population), World Bank Group.

ENERGY TRANSFORMATION **REST OF ASIA**

Regional analysis covers 16 countries:

West Asia

- Armenia
- Azerbaijan
- Turkey
- Central Asia:
- Kazakhstan
- Kyrgyz Republic
- Tajikistan
- Turkmenistan
- Uzbekistan

South Asia:

- Afghanistan
- Bangladesh
- Bhutan
- India
- Maldives
- Nepal
- Pakistan
- Sri Lanka

STATUS/CHARACTERISTICS AND NEEDS:

Population (millions)	Current:	27% of global population, mainly in India (68%) followed by Pakistan (11%), Bangladosh (8%) and Turkov (4%)
2018 2050	2050 outlook:	Average 0.7% per year increase to 2 602 million, or 28% of global population.

IRENA analysis based on E3ME.

GDP per capita (thousand USD 2015)	Current:	Well below the global average (10.9).
2.7	2050	Rapid development;
2019	outlook:	PES: CAGR = 4.9%

IRENA analysis based on E3ME.

Source: Access to electricity, 2017 values (World Bank Group, 2019a), access to clean cooking, 2016 values (World Bank Group, 2019b), TFEC, 2017 values (IEA, 2019).

Fossil fuel net import	Current status:	West and South Asian countries are net importers, while Central Asian countries are net exporters (mainly oil and gas).
high	2050 outlook:	 Rising air pollution and resource challenges; Large untapped renewable energy potential. PES: The total generation (est. 7514 TWh) represents 23% of overall renewable power potential.

Note: Current status, IRENA analysis based on proportion of net imports of fossil fuels in TPES, 2017 values (IEA, 2019). 2050 outlook, IRENA analysis and potential based on Deng *et al.* (2015).

Energy-intensive industries (% in global consumption)	Current status:	Accounts for 14% of global energy demand for iron and steel and around 9% for non-ferrous metals and non-metallic minerals industries.
2017	2050 outlook:	Increasing output of iron and steel, metals, chemicals and petrochemicals; India and Pakistan require concentrated effort and specific decarbonisation solutions.

Source: IRENA analysis based on 2017 values (IEA, 2019).

Note: 2050 values based on IRENA analysis and historical data based on Global Carbon Atlas (2019).

South Asia currently has the world's most toxic air, with 18 of the planet's 20 most-polluted cities found in India (15), Pakistan (2) and Bangladesh (1).

Record-high air pollution has periodically shut down regular activities and caused serious health issues in Delhi, India.

IRENA analysis based on PM 2.5 concentration, 2016 and 2017 values (WHO, 2019).

Electricity prices and renewables costs

LCOE based on IRENA (2019a) and electricity prices based on Global Petrol Prices (2019).

Note: The LCOE data is for projects commissioned in 2018. Real weighted average cost of capital (WACC) is 7.5% for OECD countries and China and 10% for the rest of the world.

ENERGY TRANSFORMATION: KEY BENEFITS

		Where	we are heading		Where we need to be		
Rest of Asia	2017	2030 (PES)	2040 (PES)	2050 (PES)	2030 (TES)	2040 (TES)	2050 (TES)
Energy (EJ)							
Supply (TPES)	64	89	107	124	75	80	82
Consumption (TFEC)	42	61	75	87	51	54	55
Renewables shares (modern)							
Supply (TPES)	8%	17%	19%	22%	27%	41%	58%
Consumption (TFEC)	8%	14%	17%	21%	24%	40%	59%
Power generation	18%	37%	44%	51%	52%	68%	81%
Electricity share in final energy c	onsumpti	ion					
End-use consumption	18%	21%	24%	26%	26%	37%	47%
Industry	21%	15%	15%	15%	19%	25%	32%
Transport	1%	6%	7%	9%	18%	37%	52%
Buildings	20%	45%	57%	66%	51%	63%	75%
Renewable installed capacity (G)	N)						
Bioenergy	12	30	32	35	39	45	55
Hydropower	110	149	175	185	154	202	240
Solar PV	24	216	430	733	314	706	1072
Wind	41	162	254	404	223	374	541
Biofuels							
Liquid biofuels (billions of litres per year)	1	11	29	38	14	53	81
Energy consumption per capita (GJ/capita)							
Consumption (TFEC) per capita	21	27	31	35	23	23	22
CO ₂ emissions (energy-related)							
Annual level (Gt CO ₂ /yr)	3.5	5.4	6.4	7.2	3.8	3.1	2
Reduction vs. today	NA	53%	81%	105%	8%	-11%	-43%

)2

Ī

	Where we are heading	Where we need to be
Rest of Asia	Planned Energy Scenario 2016 - 2050	Transforming Energy Scenario 2016-2050
	(PES)	(TES)

Energy system investments (average annual, 2016-50) USD billion/year

Power	122	151
– Renewable	46	84
– Non-renewable	30	16
- Power grids and system flexibility	45	52
Industry (RE + EE)	22	33
Transport (electrification + EE)	37	70
Buildings (RE + EE)	78	114
Biofuel supply	2	12
Renewable hydrogen – electrolysers	0.2	3

Note: RE = renewable energy; EE = energy efficiency

The findings in this report consider targets and developments as of April 2019. The wind and solar PV capacities in the Transforming Energy Scenario in 2030 in this report are slightly higher than the estimates presented in IRENA's reports (IRENA, 2019b; 2019c) which consider developments as of the third quarter of 2019.

SOCIO-ECONOMIC OUTLOOK TO 2050

Rest of Asia	2019e	2030	2050	
Population (thousands) region-wide	2 088 441	2 326 499	2 601 9 4 2	
GDP (USD 2015)				
GDP (million): PES	5 699 443	11 0 92 9 11	31609299	
GDP (million): TES	5 892 431	11 194 938	31994075	
GDP changes (million): TES vs. PES	192 988	102 027	384776	
GDP changes (%): TES vs. PES	3.4	0.9	1.2	
Per capita GDP (thousand): PES	2.7	4.8	12.1	
Per capita GDP (thousand): TES	2.8	4.8	12.3	
Employment				
Economy-wide employment (thousands)				
Employment: PES	1020 945	1251416	1562 473	
Employment: TES	1 0 2 1 1 6 4	1250735	1561263	
Employment changes: TES vs. PES	219	(681)	(1210)	
Employment changes (%): TES vs. PES	0.02%	-0.05%	-0.08%	

Rest of Asia

Rest of Asia	2017	2030 (PES)	2050 (PES)	2030 (TES)	2050 (TES)
Energy sector jobs (thousands)					

Nuclear power	60	103	86	91	65
Fossil fuels	3 424	6 170	6 621	5163	4 495
Renewables	1422	2846	3 577	3 795	5164
Energy efficiency	2 615	2 596	1034	3 925	1 815
Power grids and energy flexibility	1654	2 483	3009	2 551	3 220
Total	9 175	14 198	14 326	15 523	14 759
Energy jobs in economy-wide employment (%)		1.1%	0.9%	1.2%	0.9%

Renewable energy jobs (thousands)

Bioenergy	238	860	756	1243	1491
Solar	340	941	1687	1422	2504
Hydropower	760	821	798	821	774
Wind	80	220	333	305	386
Geothermal	4	4	4	5	9
Ocean	0	0	0	0	0
Total	1422	2846	3 577	3 795	5164
Renewable energy jobs in energy-sector employment (%)		20.0%	25.0%	24.4%	35.0%

Job differential in 2050 (thousands) TES vs. PES

Economy-wide	-1210
Changes in conventional energy (A)	-2147
Changes in transition related technologies (B)	2 579
Net jobs (A+B)	432

Technology jobs (thousands)		Segment valu (thousand	e chain ds)	Occupational requirements (thousands)		
Solar PV	1819	Construction & installation	1580	Workers and technicians	2 191	
Solar water heaters (SWH)	519	Manufacturing	195	Experts	250	
Onshore wind	295	Operation and maintenance	958	Engineers and higher degrees	253	
Offshore wind	91	Biofuel supply	-	Marketing and administrative	39	
Geothermal	9					
Total	2 7 3 3		2733		2 7 3 3	

Jobs in 2050: TES / Rest of Asia

Welfare	improvement	(%):
---------	-------------	------

Indicator

Total	9.8	15.7
Environmental	2.0	4.2
Social	7.7	11.3
Economic	0.1	0.2

REFERENCES:

Deng, Y., Haigh, M., Pouwels, W., Ramaekers, L., Brandsma, R., Schimschar, S., Grözinger, J. & de Jager, D. (2015), *Quantifying a realistic, worldwide wind and solar electricity supply*, Global Environmental Change 31, 239-52, https://doi.org/10.1016/j.gloenvcha.2015.01.005.

Global Carbon Atlas (2019), Global Carbon Atlas - CO2 emissions, https://doi.org/10.5194/essd-11-1675-2019.

Global Petrol Prices (2019), *Electricity prices around the world*, www.globalpetrolprices.com/electricity_prices/ (accessed 5 March 2020).

IEA (2019), IEA Beyond 20/20 – 2019 edition, International Energy Agency, Paris.

IEA, IRENA, UNSD, WB, WHO (2019), Tracking SDG 7: The Energy Progress Report 2019, Washington DC.

IRENA (2019a), Renewable Cost Database, 2019.

IRENA (2019b), Future of solar photovoltaic – Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

IRENA (2019c), Future of wind – Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

WHO (2019), WHO Global Ambient Air Quality Database (update 2018), World Health Organization, www.who.int/airpollution/data/cities/en/ (accessed 5 March 2020).

World Bank Group (2019a), Access to electricity (% of population), World Bank Group.

World Bank Group (2019b), Access to clean fuels and technologies for cooking (% of population), World Bank Group.

Rest of A<u>sia</u>

ENERGY TRANSFORMATION EUROPEAN UNION

Regional analysis covers 28 member countries*:

- Austria
- Belgium
- Bulgaria
- Croatia
- Cyprus
- Czech Republic
- Denmark
- EstoniaFinland
- France
- Hungary
- Germany
- Greece
- Ireland
- Ire

- Italy
- Latvia
- Lithuania
- Luxembourg
- Malta
- Poland
- Portugal
- Romania
- Slovakia
- Slovenia
- Spain
- Sweden
- Netherlands
- United Kingdom (UK)*

STATUS/CHARACTERISTICS AND NEEDS:

IRENA analysis based on E3ME.

IRENA analysis based on E3ME.

* The UK officially exited the European Union (EU) in January 2020. Since the analysis was based on developments until April 2019, this report considers the UK as part of the EU.

Source: Access to electricity, 2017 values (World Bank Group, 2019a), access to clean cooking, 2016 values (World Bank Group, 2019b), TFEC, 2017 values (IEA, 2019).

Fossil fuel net import	Current status:	Very limited domestic fossil fuel resources compared to primary energy consumption; heavy dependence on imported oil (93% of oil supply) and gas (79% of gas supply).
very high	2050 outlook:	 Improved regional energy security; the region has planned to be climate-neutral by 2050. PES: The total generation (est. 3796 TWh) represents 15% of overall renewable power potential.

Note: IRENA analysis based on proportion of net imports of fossil fuels in TPES, 2017 values (IEA, 2019). 2050 outlook, IRENA analysis and potential based on Deng *et al.* (2015).

Energy-intensive industries (% in global consumption)	Current status:	Accounts for about 20% of global energy demand for pulp and paper, 17% for food and tobacco, about 11% for chemical and petrochemical industry and the share in the metals and minerals industry accounts to roughly 9%.
2017	2050 outlook:	Need for urgent emissions reduction in heavy industries.

Note: Current status, IRENA analysis based on 2017 values (IEA, 2019).

Note: 2050 values based on IRENA analysis and historical data based on Global Carbon Atlas (2019).

Air pollution moderate to unhealthy in about 75% of the EU cities, mainly from transport (passenger cars, trucks).

IRENA analysis based on PM 2.5 concentration, 2016 and 2017 values (WHO, 2019).

Electricity prices and renewables costs

Electricity price:

The highest values for households and the second-highest for industries compared to the other regions

Renewables cost and auctions:

Cost-competitive, or even least cost, when compared to coal or natural gas. Average prices for historical projects are around USD 0.08/kWh for solar and USD 0.05/kWh for wind. Lower than other regions; new solar projects showing costs of around USD 0.02-0.03/kWh, and wind projects at around USD 0.03-0.04/kWh.

Note: LCOE based on IRENA (2019a) and electricity prices based on Global Petrol Prices (2019). Note: The LCOE data is for projects commissioned in 2018. Real weighted average cost of capital (WACC) is 7.5% for OECD countries and China and 10% for the rest of the world.

ENERGY TRANSFORMATION: KEY BENEFITS

ENERGY	TRANSFORM	ATION RO	ADMAP	ТО	2050

		Where we are heading			Where we need to be		
🛑 European Union	2017	2030	2040	2050	2030	2040	2050
		(PES)	(PES)	(PES)	(TES)	(TES)	(TES)
Energy (EJ)							
Supply (TPES)	68	62	57	55	54	47	42
Consumption (TFEC)	45	43	42	42	38	34	29
Renewables shares (modern)							
Supply (TPES)	15%	23%	28%	33%	39%	50%	71%
Consumption (TFEC)	17%	24%	30%	34%	36%	48%	70%
Power generation	31%	44%	50%	58%	55%	73%	86%
Electricity share in final energy co	onsumpti	on					
End-use consumption	22%	25%	27%	29%	30%	38%	49%
Industry	31%	31%	37%	38%	40%	47%	54%
Transport	2%	4%	6%	8%	7%	14%	32%
Buildings	33%	35%	37%	39%	42%	48%	55%
Renewable installed capacity (GV	V)						
Bioenergy	34	45	44	47	55	82	107
Hydropower	130	136	137	140	140	141	143
Solar PV	107	204	243	281	284	512	784
Wind	169	235	288	360	319	469	621
Biofuels							
Liquid biofuels (billions of litres per year)	25	42	46	52	72	86	97
Energy consumption per capita	(GJ/capi	ta)					
Consumption (TFEC) per capita	88	84	83	85	74	66	59
CO ₂ emissions (energy-related)							
Annual level (Gt CO ₂ /yr)	3.4	2.6	2.2	1.9	1.9	1.2	0.6
Reduction vs. today	NA	-22%	-35%	-42%	-43%	-64%	-82%

	Where we are heading	Where we need to be
European Union	Planned Energy Scenario 2016 - 2050 (PES)	Transforming Energy Scenario 2016-2050 (TES)

Energy system investments (average annual, 2016-50) USD billion/year

Power	98	145
– Renewable	38	78
– Non-renewable	22	12
- Power grids and system flexibility	38	56
Industry (RE + EE)	6	8
Transport (electrification + EE)	18	32
Buildings (RE + EE)	89	130
Biofuel supply	2	5
Renewable hydrogen – electrolysers	0	0.7

Note: RE = renewable energy; EE = energy efficiency

The findings in this report consider targets and developments as of April 2019. The wind and solar PV capacities in the Transforming Energy Scenario in 2030 in this report are slightly higher than the estimates presented in IRENA's reports (IRENA, 2019b; 2019c) which consider developments as of the third quarter of 2019.

SOCIO-ECONOMIC OUTLOOK TO 2050

🛑 European Union	2019e	2030	2050	
Population (thousands) region-wide	511 528	506 687	496 892	
GDP (USD 2015)	_			
GDP (million): PES	20903940	26 987 610	34 800 915	
GDP (million): TES	21 279 174	27 940 359	37 372 375	
GDP changes (million): TES vs. PES	375 234	952 749	2 571 460	
GDP changes (%): TES vs. PES	1.8	3.5	7.4	
Per capita GDP (thousand): PES	40.9	53.3	70.0	
Per capita GDP (thousand): TES	41.6	55.1	75.2	
Employment				
Economy-wide employment (thousands)				
Employment: PES	237 331	241626	228604	
Employment: TES	238 323	244 026	234 073	
Employment changes: TES vs. PES	992	2 400	5 4 6 9	
Employment changes (%): TES vs. PES	0.42%	0.99%	2.39%	

European Union	2017	2030 (PES)	2050 (PES)	2030 (TES)	2050 (TES)
Energy sector jobs (thousands)					
Nuclear power	104	118	73	96	27
Fossil fuels	1113	1645	1135	1346	726
Renewables	1290	1730	1636	2 5 0 2	2 701
Energy efficiency	312	1715	1496	2723	1 717
Power grids and energy flexibility	483	694	574	757	821
Total	3 303	5 901	4 914	7 424	5993
Energy jobs in economy-wide		2 40/	2 10/	7.0%	2.6%

2.4%

2.1%

3.0%

2.6%

Renewable energy jobs (thousands)

employment (%)

Bioenergy	661	736	709	968	1065
Solar	139	282	311	646	866
Hydropower	136	245	151	280	144
Wind	344	456	454	592	608
Geothermal	9	10	9	13	15
Ocean	1	1	2	2	4
Total	1290	1730	1636	2 5 0 2	2 701
Renewable energy jobs in energy-sector employment (%)		29.3%	33.3%	33.7%	45.1%

Job differential in 2050 (thousands) TES vs. PES

Economy-wide	
Changes in conventional energy (A)	-454
Changes in transition related technologies (B)	
Net jobs (A+B)	1079

🕨 Jobs in 2050: TES / 🛑 European Union					
Technology (thousan	y jobs ds)	Segment value (thousand	e chain Is)	Occupational requirements (thousands)	
Solar PV	629	Construction & installation	600	Workers and technicians	1101
Solar water heaters (SWH)	221	Manufacturing	549	Experts	164
Onshore wind	443	Operation and maintenance	324	Engineers and higher degrees	139
Offshore wind	165	Biofuel supply	-	Marketing and administrative	69
Geothermal	15				
Total	1473		1473		1473
				-	

TES vs. PES	2030	2050
Indicator		
Economic	0.9	2.0
Social	3.1	5.1
Environmental	1.7	3.5
Total	5.7	10.6

REFERENCES:

Deng, Y., Haigh, M., Pouwels, W., Ramaekers, L., Brandsma, R., Schimschar, S., Grözinger, J. & de Jager, D. (2015), *Quantifying a realistic, worldwide wind and solar electricity supply, Global Environmental Change 31, 239-52*, https://doi.org/10.1016/j.gloenvcha.2015.01.005.

Global Carbon Atlas (2019), *Global Carbon Atlas – CO₂ emissions*, https://doi.org/10.5194/essd-11-1675-2019. Global Petrol Prices (2019), *Electricity prices around the world*,

www.globalpetrolprices.com/electricity_prices/ (accessed 5 March 2020).

IEA (2019), IEA Beyond 20/20 - 2019 edition, International Energy Agency, Paris.

IRENA (2019a), Renewable Cost Database, 2019.

IRENA (2019b), Future of solar photovoltaic – Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

IRENA (2019c), Future of wind – Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

WHO (2019), *WHO Global Ambient Air Quality Database* (update 2018), World Health Organization, www.who.int/airpollution/data/cities/en/ (accessed 5 March 2020).

World Bank Group (2019a), Access to electricity (% of population), World Bank Group.

World Bank Group (2019b), Access to clean fuels and technologies for cooking (% of population), World Bank Group.

ENERGY TRANSFORMATION **REST OF EUROPE**

Regional analysis covers:

- Albania
- Andorra
- Belarus
- Bosnia and Herzegovina
 Norway
- Iceland
- Liechtenstein Monaco
- Montenegro
- - Republic of Moldova
- Russian Federation
- Serbia
- Switzerland
- North Macedonia
- Ukraine

STATUS/CHARACTERISTICS AND NEEDS:

Current: 2050 outlook: **3% of global population,** mainly in the Russian Federation (61%) and Ukraine (19%).

Average 0.3% per year decrease to 208 million, or 2.2% of global population.

IRENA analysis based on E3ME.

Current: Above the global average (10.9). 2050 Slight development; outlook: **PES:** CAGR = 1.5%

IRENA analysis based on E3ME.

Source: Access to electricity, 2017 values (World Bank Group, 2019a), access to clean cooking, 2016 values (World Bank Group, 2019b), TFEC, 2017 values (IEA, 2019).

Fossil fuel net import	Current status:	Net fossil-fuel exporter, mainly due to the Russian Federation, the world's largest oil and gas exporter,
		covering almost 6% of energy consumption in the rest of the world (2018).
low	2050 outlook:	 Vast untapped renewable potential. PES: The total generation (est. 1997 TWh) represents 7% of overall renewable power potential.

Source: IRENA analysis based on proportion of net imports of fossil fuels in TPES, 2017 values (IEA, 2019). 2050 outlook, IRENA analysis and potential based on Deng *et al.* (2015).

Energy-intensive industries (% in global consumption)	Current status:	Accounts for over 11% of global energy demand for iron and steel, around 8% for chemical and petrochemical industries and 7% for food and tobacco.
2017	2050 outlook:	Need for alternative emission-free technological solutions.

Note: Current status, IRENA analysis based on 2017 values (IEA, 2019).

Note: 2050 values based on IRENA analysis and historical data based on Global Carbon Atlas (2019).

Air pollution is problematic for some countries, such as in Southeast Europe, which have high levels of PM 2.5 compared to Norway and Switzerland that have better air quality.

IRENA analysis based on PM 2.5 concentration, 2016 and 2017 values (WHO, 2019).

Electricity prices and renewables costs

Electricity price:

Renewables cost and auctions:

Among the lowest in the world, only in MENA is lower. Similar to Rest of Asia. Average prices for historical projects are around USD 0.08/kWh and USD 0.05/kWh for solar and wind, respectively.

LCOE based on IRENA (2019a) and electricity prices based on Global Petrol Prices (2019).

Note: The LCOE data is for projects commissioned in 2018. Real weighted average cost of capital (WACC) is 7.5% for OECD countries and China and 10% for the rest of the world.

ENERGY ⁻	TRANSFORM	ATION RO	ADMAP 1	FO 2050
---------------------	-----------	----------	---------	---------

		Where	we are h	eading	Where	e we need	d to be
Rest of Europe	2017	2030	2040	2050	2030	2040	2050
	_	(PES)	(PES)	(PES)	(TES)	(TES)	(TES)
Energy (EJ)							
Supply (TPES)	39	46	46	47	38	33	29
Consumption (TFEC)	24	29	30	30	23	21	18
Renewables shares (modern)							
Supply (TPES)	6%	10%	10%	12%	19%	34%	54%
Consumption (TFEC)	7%	9%	11%	12%	20%	37%	61%
Power generation	27%	28%	28%	31%	42%	63%	82%
Electricity share in final energy co	onsumpti	on					
End-use consumption	18%	18%	20%	22%	23%	28%	38%
Industry	20%	22%	24%	25%	27%	30%	35%
Transport	6%	6%	8%	12%	12%	21%	37%
Buildings	21%	24%	26%	28%	28%	33%	42%
Renewable installed capacity (GV	V)						
Bioenergy	2	3	6	17	27	56	83
Hydropower	111	105	95	94	127	140	157
Solar PV	3	25	25	38	39	58	107
Wind	2	16	31	45	33	57	79
Biofuels							
Liquid biofuels (billions of litres per year)	1	12	18	23	22	34	47
Energy consumption per capita (GJ/capita)							
Consumption (TFEC) per capita	99	124	131	138	98	94	82
CO ₂ emissions (energy-related)							
Annual level (Gt CO ₂ /yr)	2	2.4	2.3	2.3	1.6	1.2	0.7
Reduction vs. today	NA	17%	15%	12%	-19%	-42%	-68%

	Where we are heading	Where we need to be	
Rest of Europe	Planned Energy	Transforming Energy	
	Scenario 2016 - 2050	Scenario 2016-2050	
	(PES)	(TES)	

Energy system investments (average annual, 2016-50) USD billion/year

Power	25	33
– Renewable	4	21
– Non-renewable	16	5
- Power grids and system flexibility	5	6
Industry (RE + EE)	5	7
Transport (electrification + EE)	12	20
Buildings (RE + EE)	57	83
Biofuel supply	2	8
Renewable hydrogen – electrolysers	0.1	1

Note: RE = renewable energy; EE = energy efficiency

The findings in this report consider targets and developments as of April 2019. The wind and solar PV capacities in the Transforming Energy Scenario in 2030 in this report are slightly higher than the estimates presented in IRENA's reports (IRENA, 2019b; 2019c) which consider developments as of the third quarter of 2019.

SOCIO-ECONOMIC OUTLOOK TO 2050

Rest of Europe	2019e	2030	2050		
Population (thousands) region-wide	230174	223 224	208 212		
GDP (USD 2015)					
GDP (million): PES	2 991 058	3 242 176	4 289 467		
GDP (million): TES	3 150 705	3 181 845	4 356 940		
GDP changes (million): TES vs. PES	159 6 47	-60 332	67 473		
GDP changes (%): TES vs. PES	5.3	-1.9	1.6		
Per capita GDP (thousand): PES	13.0	14.5	20.6		
Per capita GDP (thousand): TES	13.7	14.3	20.9		
Employment					
Economy-wide employment (thousands)					
Employment: PES	144 339	148 766	154 839		
Employment: TES	144 472	148 635	154 527		
Employment changes: TES vs. PES	133	-131	-313		
Employment changes (%): TES vs. PES	0.09%	-0.09%	-0.20%		

Rest of Europe	2017	2030 (PES)	2050 (PES)	2030 (TES)	2050 (TES)
Energy sector jobs (thousands)					
Nuclear power	167	181	184	148	65
Fossil fuels	3 139	3085	2962	2 771	2 407
Renewables	275	500	716	1044	1730
Energy efficiency	420	373	435	577	940
Power grids and energy flexibility	927	964	1001	978	1063
Total	4 928	5 103	5 2 9 8	5 518	6 205
Energy jobs in economy-wide employment (%)		3.4%	3.4%	3.7%	4.0%

Renewable energy jobs (thousands)

Bioenergy	97	228	395	579	1049
Solar	31	82	169	193	450
Hydropower	143	128	50	171	86
Wind	4	61	97	95	122
Geothermal	1	1	5	5	23
Ocean	0	0	0	0	0
Total	275	500	716	1044	1730
Renewable energy jobs in energy-sector employment (%)		9.8%	13.5%	18.9%	27.9%

Job differential in 2050 (thousands) TES vs. PES

Economy-wide	-313
Changes in conventional energy (A)	-674
Changes in transition related technologies (B)	1581
Net jobs (A+B)	908

·	• -	•				
Technology jobs (thousands)		Segment value (thousand	Segment value chain (thousands)		Occupational requirements (thousands)	
Solar PV	311	Construction & installation	400	Workers and technicians	485	
Solar water heaters (SWH)	138	Manufacturing	34	Experts	49	
Onshore wind	122	Operation and maintenance	160	Engineers and higher degrees	53	
Offshore wind	-	Biofuel supply	-	Marketing and administrative	8	
Geothermal	23					
Total	594		594		594	

Welfare	improv	ement	(%):
---------	--------	-------	------

TES vs. PES	2030	2050
-		
Indicator		
Economic	(0.3)	0.2
Social	4.2	7.8
Environmental	2.1	4.5
Total	6.0	12.4

REFERENCES:

Deng, Y., Haigh, M., Pouwels, W., Ramaekers, L., Brandsma, R., Schimschar, S., Grözinger, J. & de Jager, D. (2015), *Quantifying a realistic, worldwide wind and solar electricity supply, Global Environmental Change 31, 239-52,* https://doi.org/10.1016/j.gloenvcha.2015.01.005.

Global Carbon Atlas (2019), *Global Carbon Atlas – CO₂ emissions*, https://doi.org/10.5194/essd-11-1675-2019. Global Petrol Prices (2019), *Electricity prices around the world*, www.globalpetrolprices.com/electricity_prices/ (accessed 5 March 2020).

IEA (2019), *IEA Beyond 20/20 – 2019 edition*, International Energy Agency, Paris.

IRENA (2019a). Renewable Cost Database. 2019.

IRENA (2019b), Future of solar photovoltaic – Deployment, investment, technology, grid integration and socioeconomic aspects, International Renewable Energy Agency, Abu Dhabi.

IRENA (2019c), Future of wind – Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

WHO (2019), WHO Global Ambient Air Quality Database (update 2018), World Health Organization,

www.who.int/airpollution/data/cities/en/ (accessed 5 March 2020).

World Bank Group (2019a), Access to electricity (% of population), World Bank Group.

World Bank Group (2019b), Access to clean fuels and technologies for cooking (% of population), World Bank Group.

ENERGY RANSFORMATION IAMERICA K H'

Regional analysis extends from the Caribbean Islands and Central America to the southernmost tip of South America.

STATUS/CHARACTERISTICS AND NEEDS:

Current: 6.1% of global population. Highest regional share in Brazil (40%) followed by Colombia (10%) and Argentina (9%). 2050 Average 0.4% per year increase to 536 million. outlook: or 5.7% of global population.

IRENA analysis based on E3ME.

Current: 2050 outlook:

Below the global average (10.9).

Swift development; PES: CAGR = 3.8%

IRENA analysis based on E3ME.

Source: Access to electricity, 2017 values (World Bank Group, 2019a), access to clean cooking, 2016 values (World Bank Group, 2019b), TFEC, 2017 values (IEA, 2019).

Fossil fuel net import	Current status:	Comparatively energy self-sufficiency region-wide; Central America imports fossil fuels, while Andean and Southern Cone sub-regions are net exporters.
	2050 outlook:	Resource diversification; enormous untapped potential. PES: The total generation (est. 3138 TWb) just
low		represents 6% of overall renewable power potential.

Note: Current status, IRENA analysis based on proportion of net imports of fossil fuels in TPES, 2017 values (IEA, 2019). 2050 outlook, IRENA analysis and potential based on Deng *et al.* (2015).

Note: Current status, IRENA analysis based on 2017 values (IEA, 2019).

Energy-related CO ₂ emissions per capita	Recent:	Region's annual emissions: 1.2 Gt (2018). 4% of global energy-related CO ₂ emissions.
	2050 outlook:	PES: 39% increase to 1.7 Gt with enabling policies.
2018 2050		

Note: 2050 values based on IRENA analysis and historical data based on Global Carbon Atlas (2019).

Rising transport emissions with continued population growth and urbanisation.

Current plans would boost light-vehicle sales, but also intensify traffic jams and local pollution.

IRENA analysis based on PM 2.5 concentration, 2016 and 2017 values (WHO, 2019).

Electricity prices and renewables costs

Electricity price:

to other regions.

and industries) compared

Renewables cost and auctions: Mid-range (for households

Cost-competitive; Argentina attained wind price at an average of USD 0.041/kWh in 2017; Brazil attained solar price at an average of USD 0.021/kWh in 2019 (IRENA, 2019a). Hydropower projects remain highly competitive.

Source: LCOE based on IRENA (2019b) and electricity prices based on Global Petrol Prices (2019). Note: The LCOE data is for projects commissioned in 2018. Real weighted average cost of capital (WACC) is 7.5% for OECD countries and China and 10% for the rest of the world.

Latin America and the Caribbean

õ

ENERGY TRANSFORMATION ROADMAP TO 2050

		Where	we are h	eading	Where	e we need	d to be
🕨 Latin America & Caribbean	2017	2030	2040	2050	2030	2040	2050
		(PES)	(PES)	(PES)	(TES)	(TES)	(TES)
Energy (EJ)							•
Supply (TPES)	27	35	42	46	29	31	31
Consumption (TFEC)	21	27	31	34	22	22	21
Renewables shares (modern)							
Supply (TPES)	30%	40%	42%	46%	53%	63%	73%
Consumption (TFEC)	30%	36%	37%	40%	47%	57%	67%
Power generation	65%	73%	75%	79%	85%	90%	93%
Electricity share in final energy co	onsumpti	on					
End-use consumption	18%	22%	24%	26%	26%	31%	39%
Industry	21%	24%	24%	25%	27%	29%	33%
Transport	0.2%	1%	1%	2%	9%	14%	24%
Buildings	45%	58%	63%	67%	61%	70%	78%
Renewable installed capacity (GV	V)						
Bioenergy	19	45	61	79	50	72	94
Hydropower	173	181	201	226	186	211	240
Solar PV	5	76	128	177	108	196	281
Wind	17	74	111	148	93	141	188
Biofuels							
Liquid biofuels (billions of litres per year)	31	61	74	79	61	75	73
Energy consumption per capita (GJ/capita)							
Consumption (TFEC) per capita	41	47	53	56	38	38	35
CO ₂ emissions (energy-related)							
Annual level (Gt CO ₂ /yr)	1.2	1.4	1.6	1.7	1	0.8	0.6
Reduction vs. today	NA	19%	35%	38%	-21%	-35%	-54%

4

	Where we are heading	Where we need to be	
🛡 Latin America & Caribbean	Planned Energy Scenario 2016 - 2050 (PES)	Transforming Energy Scenario 2016-2050 (TES)	

Energy system investments (average annual, 2016-50) USD billion/year

Power	39	45
– Renewable	21	28
– Non-renewable	5	3
- Power grids and system flexibility	13	15
Industry (RE + EE)	7	11
Transport (electrification + EE)	10	19
Buildings (RE + EE)	29	42
Biofuel supply	2.4	2.5
Renewable hydrogen – electrolysers	0.03	0.5

Note: RE = renewable energy; EE = energy efficiency

The findings in this report consider targets and developments as of April 2019. The wind and solar PV capacities in the Transforming Energy Scenario in 2030 in this report are slightly higher than the estimates presented in IRENA's reports (IRENA, 2019c; 2019d) which consider developments as of the third quarter of 2019.

SOCIO-ECONOMIC OUTLOOK TO 2050

🛡 Latin America & Caribbean	2019e	2030	2050	
Population (thousands) region-wide	474 076	505 546	535 802	ſ
GDP (USD 2015)				
GDP (million): PES	3 679 104	5 158 950	13 240 587	
GDP (million): TES	3 700 954	5 194 779	13 563 681	
GDP changes (million): TES vs. PES	21850	35 828	323 093	
GDP changes (%): TES vs. PES	0.6	0.7	2.4	
Per capita GDP (thousand): PES	7.8	10.2	24.7	
Per capita GDP (thousand): TES	7.8	10.3	25.3	
Employment				
Economy-wide employment (thousands)				
Employment: PES	272 097	282 324	251102	
Employment: TES	272 239	281 399	250 700	
Employment changes: TES vs. PES	143	-925	-402	
Employment changes (%): TES vs. PES	0.05	-0.33	-0.16	

🛑 Latin America & Caribbean	2017	2030 (PES)	2050 (PES)	2030 (TES)	2050 (TES)
Energy sector jobs (thousands)					
Nuclear power	8	12	8	10	6
Fossil fuels	1180	1104	953	962	700
Renewables	2 027	2 575	2 585	3 295	3 212
Energy efficiency	887	870	735	1 211	818
Power grids and energy flexibility	364	466	403	463	455
Total	4 467	5026	4 6 8 5	5 941	5 190
Energy jobs in economy-wide employment (%)		1.80%	1.90%	2.10%	2.10%

Renewable energy jobs (thousands)

Bioenergy	1620	1971	1875	2 3 3 1	2133
Solar	64	173	301	474	570
Hydropower	300	320	264	351	306
Wind	42	109	143	136	199
Geothermal	1	2	2	2	4
Ocean	0	0	0	0	0
Total	2 0 2 7	2 575	2 5 8 5	3 295	3 212
Renewable energy jobs in energy-sector employment (%)		51.2%	55.2%	55.5%	61.9%

Job differential in 2050 (thousands) TES vs. PES

Economy-wide	-402
Changes in conventional energy (A)	-255
Changes in transition related technologies (B)	761
Net jobs (A+B)	506

Technology jobs (thousands)		Segment value chain (thousands)		Occupational requirements (thousands)	
Solar PV	276	Construction & installation	372	Workers and technicians	631
Solar water heaters (SWH)	293	Manufacturing	225	Experts	64
Onshore wind	195	Operation and maintenance	174	Engineers and higher degrees	52
Offshore wind	5	Biofuel supply	-	Marketing and administrative	25
Geothermal	4				
Total	771		771		771

🕨 Jobs in 2050: TES / 🛑 Latin America & Caribbean

Welfare	improvement	(%):
---------	-------------	------

TES vs. PES	2030	2050
Indicator		
Economic	-0.1	0.2
Social	2.8	10.0
Environmental	2.2	4.6
Total	5.0	14.8

REFERENCES:

Deng, Y., Haigh, M., Pouwels, W., Ramaekers, L., Brandsma, R., Schimschar, S., Grözinger, J. & de Jager, D. (2015), *Quantifying a realistic, worldwide wind and solar electricity supply*, Global Environmental Change 31, 239-52, https://doi.org/10.1016/j.gloenvcha.2015.01.005. Global Carbon Atlas (2019), *Global Carbon Atlas – CO₂ emissions*, https://doi.org/10.5194/essd-11-1675-2019. Global Petrol Prices (2019), *Electricity prices around the world*, www.globalpetrolprices.com/electricity_prices/ (accessed 5 March 2020).

IEA (2019), *IEA Beyond 20/20* – 2019 edition, International Energy Agency, Paris.

IRENA (2019a), *Renewable energy auctions: Status and trends beyond price*, International Renewable Energy Agency, Abu Dhabi

IRENA (2019b), Renewable Cost Database, 2019.

IRENA (2019c), Future of solar photovoltaic – Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

IRENA (2019d), Future of wind – Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

WHO (2019), WHO Global Ambient Air Quality Database (update 2018), World Health Organization,

 $www.who.int/airpollution/data/cities/en/\ (accessed \ 5 \ March \ 2020).$

World Bank Group (2019a), Access to electricity (% of population), World Bank Group.

World Bank Group (2019b), Access to clean fuels and technologies for cooking (% of population), World Bank Group.

ENERGY TRANSFORMATION MIDDLE EAST AND NORTH AFRICA

STATUS/CHARACTERISTICS AND NEEDS:

Regional analysis covers major oil and gas exporters as well as net importers, spanning the Gulf States, other parts of the Middle East, and North Africa.

Middle East: • Bahrain

Iraq

Israel

Jordan

Kuwait

• Lebanon

Iran (Islamic Republic of)

- Oman
- Qatar
 - Saudi Arabia
- State of Palestine
- Syrian Arab Republic
- United Arab Emirates
- Yemen

North Africa:

- Algeria
- Egypt
- Libya
- Morocco
- Tunisia
- Western Sahara
- Djibouti

2050 outlook:

Current:

6% of global population, highest regional share in Egypt (22%), Iran (18%) and Algeria (9.4%).

Average **1.1% per year increase** to **677 million**, or 7% of global population.

IRENA analysis based on E3ME.

GDP per capita	Current:	Below the global average (10.9).
9.2 22.9	2050 outlook:	Adequate development; PES: CAGR = 3%

IRENA analysis based on E3ME.

2019 2050

Source: Access to electricity, 2017 values (World Bank Group, 2019a), access to clean cooking, 2016 values (World Bank Group, 2019b), TFEC, 2017 values (IEA, 2019).

Fossil fuel net import	Current status:	Region contributes to 37% of global oil production and 35% of global natural gas production ; with oil production dominated by Saudi Arabia (35%), Iran (14%) and Iraq (13%) and gas production dominated by Iran (28%), Qatar (22%) and Saudi Arabia (14%) (Tagliapietra, 2019).
very low	2050 outlook:	 Vast untapped renewable energy potential. PES: The total generation (est. 3477 TWh) just represents 5% of overall renewable power potential.

Note: Current status, IRENA analysis based on proportion of net imports of fossil fuels in TPES, 2017 values (IEA, 2019). 2050 outlook, IRENA analysis and potential based on Deng *et al.* (2015).

IRENA analysis based on 2017 values (IEA, 2019).

Note: 2050 values based on IRENA analysis and historical data based on Global Carbon Atlas (2019).

Air quality has **deteriorated dramatically** in recent decades. Few cities (3%) with more than 100 000 inhabitants in low- and middle-income MENA countries meet **WHO air quality guidelines** (2018).

IRENA analysis based on PM 2.5 concentration, 2016 and 2017 values (WHO, 2019).

Electricity prices and renewables costs

Electricity price:

Renewables cost and auctions:

The lowest compared to
the other regions due
to fossil-fuel subsidies.In 2019, Morocco auctioned an advanced hybrid (CSP/PV) plant for a
record-low peak-hour tariff of USD 0.071/kWh (IRENA, 2019a). United
Arab Emirates contracted solar power at USD 0.299/kWh (IRENA, 2017).

Middle East and North Africa

LCOE based on IRENA (2019b) and electricity prices based on Global Petrol Prices (2019).

Note: The LCOE data is for projects commissioned in 2018. Real weighted average cost of capital (WACC) is 7.5% for OECD countries and China and 10% for the rest of the world.

ENERGY TRANSFORMATION: KEY BENEFITS

ENERGY TRANSFORMATION ROADMAP TO 2050

	Where we are head				ading Where we need to be		
Middle East and North Africa	2017	2030	2040	2050	2030	2040	2050
		(PES)	(PES)	(PES)			(123)
Energy (EJ)							
Supply (TPES)	40	52	60	62	40	35	29
Consumption (TFEC)	23	33	39	41	25	24	20
Supply (TPES)	1%	4%	6%	7%	9%	16%	26%
Consumption (TFEC)	1%	4%	4%	5%	8%	15%	26%
Power generation	3%	14%	17%	20%	27%	39%	53%
Electricity share in final energy co	onsumpti	on					
End-use consumption	19%	16%	18%	20%	20%	27%	38%
Industry	12%	8%	8%	9%	12%	15%	20%
Transport	0.1%	0.3%	1%	2%	2%	7%	16%
Buildings	43%	44%	46%	50%	48%	59%	77%
Renewable installed capacity (GV	V)						
Bioenergy	0	2	2	3	2	3	3
Hydropower	20	18	21	23	20	23	26
Solar PV	2	53	71	85	66	108	147
Wind	2	51	100	138	76	158	212
Biofuels							
Liquid biofuels (billions of litres per year)	NA	3	3	4	4	5	6
Energy consumption per capita	(GJ/capi	ta)					
Consumption (TFEC) per capita	51	62	65	62	47	40	30
CO ₂ emissions (energy-related)							
Annual level (Gt CO ₂ /yr)	2.5	2.9	3.2	3.2	2	1.6	1.1
Reduction vs. today	NA	16%	29%	30%	-20%	-34%	-56%

7/

Energy system investments (average annual, 2016-50) USD billion/year

Power	55	53
– Renewable	9	16
– Non-renewable	22	14
- Power grids and system flexibility	24	23
Industry (RE + EE)	8	11
Transport (electrification + EE)	11	15
Buildings (RE + EE)	52	76
Biofuel supply	1.1	3
Renewable hydrogen – electrolysers	0.3	2.8

Middle East and North Africa

Note: RE = renewable energy; EE = energy efficiency

Employment changes: TES vs. PES

Employment changes (%): TES vs. PES

The findings in this report consider targets and developments as of April 2019. The wind and solar PV capacities in the Transforming Energy Scenario in 2030 in this report are slightly higher than the estimates presented in IRENA's reports (IRENA, 2019c; 2019d) which consider developments as of the third quarter of 2019.

SOCIO-ECONOMIC OUTLOOK TO 2050

Middle East and North Africa	2019e	2030	2050
Population (thousands) region-wide	491460	567 708	677 439
GDP (USD 2015)			
GDP (million): PES	4 516 464	7 372 988	15 494 435
GDP (million): TES	4 580 811	7 358 619	15 112 505
GDP changes (million): TES vs. PES	64347	-14 368	-381930
GDP changes (%): TES vs. PES	1.4	-0.2	-2.5
Per capita GDP (thousand): PES	9.2	13.0	22.9
Per capita GDP (thousand): TES	9.3	13.0	22.3
Employment			
Economy-wide employment (thousands)			
Employment: PES	175 696	187 016	186 184
Employment: TES	175 742	186 825	185 801

46

0.03%

-191

-0.10%

-382

-0.21%

Middle East and North Africa	2017	2030 (PES)	2050 (PES)	2030 (TES)	2050 (TES)
Energy sector jobs (thousands)					
Nuclear power	15	56	70	55	42
Fossil fuels	2 815	3 693	3 379	3 257	2 6 2 5
Renewables	542	789	895	1226	2064
Energy efficiency	1113	1809	1328	2 731	1537
Power grids and energy flexibility	622	927	885	900	1014
Total	5 108	7 274	6 557	8 168	7 283
Energy jobs in economy-wide employment (%)		3.9%	3.5%	4.4%	3.9%

Renewable energy jobs (thousands)

Bioenergy	196	290	282	584	846
Solar	88	180	265	283	703
Hydropower	250	262	250	266	239
Wind	7	55	93	90	273
Geothermal	1	2	4	3	4
Ocean	0	0	0	0	0
Total	542	789	895	1226	2064
Renewable energy jobs in energy-sector employment (%)		10.8%	13.6%	15.0%	28.3%

Job differential in 2050 (thousands) TES vs. PES

Economy-wide	-382
Changes in conventional energy (A)	-782
Changes in transition related technologies (B)	1507
Net jobs (A+B)	726

Technology (thousan	/ jobs ds)	Segment value (thousanc	Segment value chain (thousands)		irements)
Solar PV	343	Construction & installation	559	Workers and technicians	774
Solar water heaters (SWH)	332	Manufacturing	153	Experts	80
Onshore wind	273	Operation and maintenance	240	Engineers and higher degrees	76
Offshore wind	0	Biofuel supply	-	Marketing and administrative	22
Geothermal	4				
Total	952		952		952

Jobs in 2050: TES / Middle East and North Africa

Welfare	improvement	(%)
TES ve I	DEC	

TES vs. PES	2030	2050		
Indicator				
Economic	0.0	0.0		
Social	4.3	7.7		
Environmental	1.9	4.6		
Total	6.2	12.3		

REFERENCES:

Deng, Y., Haigh, M., Pouwels, W., Ramaekers, L., Brandsma, R., Schimschar, S., Grözinger, J. & de Jager, D. (2015), Quantifying a realistic, worldwide wind and solar electricity supply, Global Environmental Change 31, 239-52, https://doi.org/10.1016/j.gloenvcha.2015.01.005.

Global Carbon Atlas (2019), Global Carbon Atlas - CO2 emissions, https://doi.org/10.5194/essd-11-1675-2019. Global Petrol Prices (2019), Electricity prices around the world,

www.globalpetrolprices.com/electricity_prices/ (accessed 5 March 2020).

IEA (2019), IEA Beyond 20/20 - 2019 edition, International Energy Agency, Paris.

IRENA (2019a), Renewable energy auctions: Status and trends beyond price, International Renewable Energy Agency, Abu Dhabi

IRENA (2019b), Renewable Cost Database, 2019.

IRENA (2019c), Future of solar photovoltaic - Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

IRENA (2019d), Future of wind - Deployment, investment, technology, grid integration and socio-economic aspects. International Renewable Energy Agency, Abu Dhabi,

IRENA (2017), Renewable Energy Auctions: Analysing 2016. IRENA, Abu Dhabi.

Tagliapietra, S. (2019), The impact of the global energy transition on MENA oil and gas producers, Energy Strategy Reviews 26, https://doi.org/10.1016/j.esr.2019.100397

WHO (2019), WHO Global Ambient Air Quality Database (update 2018), World Health Organization, www.who.int/airpollution/data/cities/en/ (accessed 5 March 2020).

World Bank Group (2019a), Access to electricity (% of population), World Bank Group.

World Bank Group (2019b), Access to clean fuels and technologies for cooking (% of population), World Bank Group.

ENERGY TRANSFORMATION NORTH AMERICA

Regional analysis covers three countries:

Canada
 Mexico
 United States

STATUS/CHARACTERISTICS AND NEEDS:

Population (millions)	Current:	6.5% of global population, mainly in the United States (67%), Mexico (26%) and Canada (7%).			
492 2018 591 2050	2050 outlook:	Average 0.6% per year increase to 591 million, or 6.3% of global population.			

IRENA analysis based on E3ME.

Current: 2050 outlook: Well above the global average (10.9).

Slight development; PES: CAGR = 1.6%

IRENA analysis based on E3ME.

Source: Access to electricity, 2017 values (World Bank Group, 2019a), access to clean cooking, 2016 values (World Bank Group, 2019b), TFEC, 2017 values (IEA, 2019).

Fossil fuel net import	Current status:	Largely self-sufficient; US, while still a net importer of crude oil, exports refined oil products and natural gas; Canada and Mexico have significant oil and gas reserves.
	2050 outlook:	Continued negative health effects due to rising fossil fuel use; considerable untapped renewable potential.
medium		PES: The total generation (est. 7071 TWh) represents 13% of overall renewable power potential.

Note: Current status, IRENA analysis based on proportion of net imports of fossil fuels in TPES, 2017 values (IEA, 2019). 2050 outlook, IRENA analysis and potential based on Deng *et al.* (2015).

Energy-intensive industries (% in global consumption)	Current status:	Over one-third of global paper energy demand is found in the region, as well as around one-fifth of global chemical and petrochemical and food and tobacco energy consumption.
2017	2050 outlook:	Urgent need for emissions reduction in heavy industries.

IRENA analysis based on 2017 values (IEA, 2019).

Note: 2050 values based on IRENA analysis and historical data based on Global Carbon Atlas (2019).

- 80% urban population, often concentrated in large cities.
- Air pollution at moderate to unhealthy levels in 18% of cities mainly due to transport sector emissions.

IRENA analysis based on PM 2.5 concentration, 2016 and 2017 values (WHO, 2019).

Electricity prices and renewables costs

Electricity price:	Renewable power costs:	Auction prices:
Above the global	Competitive or least-cost compared	Lower than other regions;
average for both	to coal or natural gas, with solar PV	new solar projects achieve around
households and industries.	averaging USD 0.08 cents/kWh and wind USD 0.05/kWh (2018).	USD 0.02-0.03/kWh, and new wind projects around USD 0.03-0.04/kWh.

LCOE based on IRENA (2019a) and electricity prices based on Global Petrol Prices (2019).

Note: The LCOE data is for projects commissioned in 2018. Real weighted average cost of capital (WACC) is 7.5% for OECD countries and China and 10% for the rest of the world.

ENERGY TRANSFORMATION: KEY BENEFITS

		Where we are heading			Where we need to be		
🛑 North America	2017	2030	2040	2050	2030	2040	2050
		(PES)	(PES)	(PES)	(TES)	(TES)	(TES)
Energy (EJ)							
Supply (TPES)	112	116	120	127	87	82	77
Consumption (TFEC)	79	86	89	93	69	64	58
Renewables shares (modern)							
Supply (TPES)	10%	13%	14%	17%	30%	50%	67%
Consumption (TFEC)	10%	12%	13%	15%	29%	48%	68%
Power generation	23%	30%	33%	38%	60%	79%	85%
Electricity share in final energy co	onsumpti	on					
End-use consumption	20%	21%	21%	22%	28%	40%	52%
Industry	20%	19%	19%	19%	20%	25%	28%
Transport	0.2%	1%	2%	2%	13%	35%	57%
Buildings	48%	48%	49%	50%	54%	63%	78%
Renewable installed capacity (GV	V)						
Bioenergy	16	19	18	30	22	26	25
Hydropower	177	182	198	238	180	192	204
Solar PV	45	153	296	512	485	1054	1728
Wind	104	174	189	191	448	946	1314
Biofuels							
Liquid biofuels (billions of litres per year)	64	63	62	70	96	144	183
Energy consumption per capita	(GJ/capi	ta)					
Consumption (TFEC) per capita	163	163	159	161	130	114	101
CO ₂ emissions (energy-related)		·					
Annual level (Gt CO ₂ /yr)	6.2	6.6	6.7	6.8	3.7	2.5	1.4
Reduction vs. today	NA	7%	8%	10%	-41%	-59%	-77%

	Where we are heading	Where we need to be	
North America	Planned Energy Scenario 2016 - 2050 (PES)	Transforming Energy Scenario 2016-2050 (TES)	

Energy system investments (average annual, 2016-50) USD billion/year

Power	117	195
– Renewable	31	108
– Non-renewable	45	22
- Power grids and system flexibility	41	65
Industry (RE + EE)	18	27
Transport (electrification + EE)	29	97
Buildings (RE + EE)	118	177
Biofuel supply	0.5	5.9
Renewable hydrogen – electrolysers	0.05	2.1

Note: RE = renewable energy; EE = energy efficiency

The findings in this report consider targets and developments as of April 2019. The wind and solar PV capacities in the Transforming Energy Scenario in 2030 in this report are slightly higher than the estimates presented in IRENA's reports (IRENA, 2019b; 2019c) which consider developments as of the third quarter of 2019.

SOCIO-ECONOMIC OUTLOOK TO 2050

North America	2019e	2030	2050
Population (thousands) region-wide	496 175	536 927	590 667
GDP (USD 2015)			
GDP (million): PES	21 913 288	27 877 680	42 199 950
GDP (million): TES	22 188 303	28 117 917	42 814 939
GDP changes (million): TES vs. PES	275 016	240 237	614 990
GDP changes (%): TES vs. PES	1.3	0.9	1.5
Per capita GDP (thousand): PES	44.2	51.9	71.4
Per capita GDP (thousand): TES	44.7	52.4	72.5
Employment			
Economy-wide employment (thousands)			
Employment: PES	250 014	279 310	288 609
Employment: TES	251639	281 435	291621
Employment changes: TES vs. PES	1625	2 125	3 012
Employment changes (%): TES vs. PES	0.05	-0.33	-0.16

North America	2017	2030 (PES)	2050 (PES)	2030 (TES)	2050 (TES)
Energy sector jobs (thousands)					

Nuclear power	60	69	53	71	18
Fossil fuels	1126	1380	1 318	1053	816
Renewables	992	1197	1367	2 335	2 987
Energy efficiency	733	3945	3 363	6 058	3805
Power grids and energy flexibility	375	572	510	656	837
Total	3 285	7 163	6 610	10 174	8 463
Energy jobs in economy-wide employment (%)		2.56%	2.29%	3.61%	2.90%

Renewable energy jobs (thousands)

Bioenergy	449	431	422	625	764
Solar	269	390	601	1137	1520
Hydropower	97	127	121	135	125
Wind	134	202	174	386	512
Geothermal	43	47	49	52	61
Ocean	-	-	-	0	5
Total	992	1197	1367	2 335	2 987
Renewable energy jobs in energy-sector employment (%)		16.7%	20.7%	23.0%	35.3%

Job differential in 2050 (thousands) TES vs. PES

Economy-wide	3 012
Changes in conventional energy (A)	-537
Changes in transition related technologies (B)	2 390
Net jobs (A+B)	1853

Technology jobs (thousands)		Segment value (thousanc	e chain Is)	Occupational requirements (thousands)	
Solar PV	991	Construction & installation	915	Workers and technicians	1639
Solar water heaters (SWH)	516	Manufacturing	561	Experts	199
Onshore wind	462	Operation and maintenance	604	Engineers and higher degrees	174
Offshore wind	49	Biofuel supply	-	Marketing and administrative	67
Geothermal	61				
Total	2 079		2 079		2 079

Jobs in 2050: TES / North America

Welfare improvement (%):

TES vs. PES	2030	2050
-		
Indicator		
Economic	0.3	0.6
Social	4.0	8.4
Environmental	3.3	6.5
Total	7.7	15.5

REFERENCES:

Deng, Y., Haigh, M., Pouwels, W., Ramaekers, L., Brandsma, R., Schimschar, S., Grözinger, J. & de Jager, D. (2015), *Quantifying a realistic, worldwide wind and solar electricity supply*, Global Environmental Change 31, 239-52, https://doi.org/10.1016/j.gloenvcha.2015.01.005.

Global Carbon Atlas (2019), Global Carbon Atlas - CO2 emissions, https://doi.org/10.5194/essd-11-1675-2019.

Global Petrol Prices (2019), Electricity prices around the world,

www.globalpetrolprices.com/electricity_prices/ (accessed 5 March 2020).

IEA (2019), IEA Beyond 20/20 – 2019 edition, International Energy Agency, Paris.

IRENA (2019a), Renewable Cost Database, 2019.

IRENA (2019b), Future of solar photovoltaic – Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

IRENA (2019c), *Future of wind – Deployment, investment, technology, grid integration and socio-economic aspects*, International Renewable Energy Agency, Abu Dhabi. WHO (2020), *Air pollution – Overview*, World Health Organization, www.who.int/westernpacific/health-topics/air-pollution (accessed 6 March 2020).

WHO (2019), WHO Global Ambient Air Quality Database (update 2018), World Health Organization, www.who.int/airpollution/data/cities/en/ (accessed 5 March 2020).

World Bank Group (2019a), Access to electricity (% of population), World Bank Group.

World Bank Group (2019b), Access to clean fuels and technologies for cooking (% of population), World Bank Group.

GLOBAL RENEWABLES OUTLOOK

ENERGY TRANSFORMATION OCEANIA

Regional analysis covers countries and territories between the Indian, Pacific and Southern Oceans.:

- Australia
- Heard Island and McDonald Islands
- New CaledoniaNew Zealand
- Norfolk Island
- Solomon Islands

French Polynesia

• Vanuatu

- Christmas Island
- Cocos (Keeling) Islands
- Fiji
- The Federated States of Micronesia
- Papua New Guinea

STATUS/CHARACTERISTICS AND NEEDS:

Source: UNSD (2019).

a*	Current:	Well above the global average (10.9).
97.6	2050 outlook:	Adequate development; PES: CAGR = 2.5%

IRENA analysis based on E3ME.

*Due to data gaps, the economic analysis only includes Australia and New Zealand.

Source: Access to electricity, 2017 values (World Bank Group, 2019a), access to clean cooking, 2016 values (World Bank Group, 2019b), TFEC, 2017 values (IEA, 2019).

Fossil fuel net import	Current status:	Region produces 3.6% of global fossil fuels , with Australia as leading coal and Liquefied Natural Gas (LNG) exporter; New Zealand's coal mines are closing; small island states import diesel for power generation.
	2050	Enormous untapped renewable energy potential.
very low	outlook:	PES: The total generation (est. 477 TWh) just represents 1% of overall renewable power potential.

Note: Current status, IRENA analysis based on proportion of net imports of fossil fuels in TPES, 2017 values (IEA, 2019). 2050 outlook, IRENA analysis and potential based on Deng *et al.* (2015).

Energy-intensive industries (% in global consumption)	Current status:	Concentrated mainly in Australia and New Zealand. At regional level, highest demand for non-ferrous metal and food and tobacco industries.
2017	2050 outlook:	Need for alternative emission-free technological solutions.

IRENA analysis based on 2017 values (IEA, 2019).

Note: 2050 values based on IRENA analysis and historical data based on Global Carbon Atlas (2019).

Mainly due to **city transpor**t; Light-vehicle sales set to grow with population; Ambitious plans promise to ramp up use of **electric vehicles** in New Zealand (IEA, 2017).

IRENA analysis based on PM 2.5 concentration, 2016 and 2017 values (WHO, 2019).

Electricity prices and renewables costs

Electricity price:

Renewables cost and auctions:

The highest values for industries and the second-highest for households compared to the other regions.

In 2017, an auction for concentrated solar power (CSP) was held in the state of South Australia and 150 MW was awarded at a price of USD 0.061/kWh (IRENA, 2019a).

Source: LCOE based on IRENA (2019b) and electricity prices based on Global Petrol Prices (2019). Note: The LCOE data is for projects commissioned in 2018. Real weighted average cost of capital (WACC) is 7.5% for OECD countries and China and 10% for the rest of the world. Small firm electricity price analysis is based only on Australia values.

ENERGY TRANSFORMATION: KEY BENEFITS

ENERGY TRANSFORMATION ROADMAP TO 2050

		Where we are heading		Where we need to be			
Oceania	2017	2030	2040	2050	2030	2040	2050
		(PES)	(PES)	(PES)	(TES)	(TES)	(TES)
Energy (EJ)							
Supply (TPES)	7	10	11	12	10	6	10
Consumption (TFEC)	4	6	7	8	6	6	5
Renewables shares (modern)							
Supply (TPES)	10%	22%	27%	34%	39%	71%	85%
Consumption (TFEC)	11%	14%	15%	18%	26%	58%	75%
Power generation	25%	45%	51%	61%	66%	92%	93%
Electricity share in final energy co	onsumpti	on					
End-use consumption	23%	20%	19%	20%	22%	32%	45%
Industry	27%	19%	18%	18%	20%	48%	67%
Transport	1%	1%	1%	1%	6%	13%	31%
Buildings	57%	60%	60%	61%	64%	36%	34%
Renewable installed capacity (GV	V)						
Bioenergy	1	1	1	2	3	2	3
Hydropower	13	17	14	14	21	20	22
Solar PV	6	11	17	27	27	84	109
Wind	6	11	18	26	25	46	65
Biofuels							
Liquid biofuels (billions of litres per year)	0.2	0.5	1	1	3	3	3
Energy consumption per capita (GJ/capita)							
Consumption (TFEC) per capita	100	133	135	134	117	104	91
CO ₂ emissions (energy-related)							
Annual level (Gt CO ₂ /yr)	0.4	0.6	0.6	0.6	0.4	0.2	0.1
Reduction vs. today	NA	32%	38%	37%	-8%	-54%	-73%

4

Oceania	(PES)	(TES)
	Planned Energy Scenario 2016 - 2050	Transforming Energy Scenario 2016-2050
	Where we are heading	Where we need to be

Energy system investments (average annual, 2016-50) USD billion/year

Power	7	16
– Renewable	3	10
– Non-renewable	1	1
- Power grids and system flexibility	2	4
Industry (RE + EE)	2	3
Transport (electrification + EE)	2	5
Buildings (RE + EE)	6	11
Biofuel supply	0.1	0.3
Renewable hydrogen – electrolysers	0	1.1

Note: RE = renewable energy; EE = energy efficiency

The findings in this report consider targets and developments as of April 2019. The wind and solar PV capacities in the Transforming Energy Scenario in 2030 in this report are slightly higher than the estimates presented in IRENA's reports (IRENA, 2019c; 2019d) which consider developments as of the third quarter of 2019.

SOCIO-ECONOMIC OUTLOOK TO 2050*

Oceania	2019e	2030	2050	
Population (thousands) region-wide	29739	32 982	37 063	
GDP (USD 2015)				
GDP (million): PES	1361509	1935173	3 618 538	
GDP (million): TES	1 311 801	1936844	3 595 574	
GDP changes (million): TES vs. PES	-49 708	1671	-22964	
GDP changes (%): TES vs. PES	-3.7	0.1	-0.6	
Per capita GDP (thousand): PES	45.8	58.7	97.6	
Per capita GDP (thousand): TES	44.1	58.7	97.0	
Employment				
Economy-wide employment (thousands)				
Employment: PES	16 479	18 955	19 816	
Employment: TES	16 471	19 020	19923	
Employment changes: TES vs. PES	-8	65	107	
Employment changes (%): TES vs. PES	-0.05%	0.34%	0.54%	

* Due to data gaps, only Australia and New Zealand are considered for the socio-economic analysis.

Oceania	2017	2030 (PES)	2050 (PES)	2030 (TES)	2050 (TES)

Energy sector jobs (thousands)

Nuclear power	-	-	-	-	-
Fossil fuels	215	266	227	240	193
Renewables	37	54	61	116	293
Energy efficiency	3	52	56	97	62
Power grids and energy flexibility	53	60	54	66	78
Total	307	432	398	519	626
Energy jobs in economy-wide employment (%)		2.3%	2.0%	2.7%	3.1%

Renewable energy jobs (thousands)

Bioenergy	19	24	22	42	56
Solar	8	14	30	54	216
Hydropower	8	9	2	9	3
Wind	1	4	5	9	12
Geothermal	1	3	1	3	5
Ocean	-	-	-	0	1
Total	37	54	61	116	293
Renewable energy jobs in energy-sector employment (%)		12.5%	15.3%	22.4%	46.8%

Job differential in 2050 (thousands) TES vs. PES

Economy-wide	107
Changes in conventional energy (A)	-34
Changes in transition related technologies (B)	262
Net energy sector jobs (A+B)	228
2050

Technology jobs (thousands)		Segment value (thousand	e <mark>chain</mark> ls)	Occupational requirements (thousands)		
Solar PV	52	Construction & installation	134	Workers and technicians	203	
Solar water heaters (SWH)	159	Manufacturing	27	Experts	11	
Onshore wind	11	Operation and maintenance	67	Engineers and higher degrees	9	
Offshore wind	0	Biofuel supply	-	Marketing and administrative	4	
Geothermal	5					
Total	227		227		227	

Jobs in 2050: TES / Oceania

C) ((\supset
\bigcap	$\left<\right>$	3	

Indicator		
Economic	0.0	0.0
Social	5.0	12.3
Environmental	2.2	5.0
Total	7.2	17.3

2030

REFERENCES:

Welfare improvement (%):

TES vs. PES

Deng, Y., Haigh, M., Pouwels, W., Ramaekers, L., Brandsma, R., Schimschar, S., Grözinger, J. & de Jager, D. (2015), *Quantifying a realistic, worldwide wind and solar electricity supply*, Global Environmental Change 31, 239-52, https://doi.org/10.1016/j.gloenvcha.2015.01.005.

Global Carbon Atlas (2019), Global Carbon Atlas - CO2 emissions, https://doi.org/10.5194/essd-11-1675-2019.

Global Petrol Prices (2019), Electricity prices around the world,

www.globalpetrolprices.com/electricity_prices/ (accessed 5 March 2020).

IEA (2019), *IEA Beyond 20/20* – 2019 edition, International Energy Agency, Paris.

IEA (2017), Energy Policies of IEA Countries: New Zealand 2017 Review, IEA, Paris

https://www.iea.org/reports/energy-policies-of-iea-countries-new-zealand-2017-review

IRENA (2019a) Renewable energy auctions: Status and trends beyond price, International Renewable Energy Agency, Abu Dhabi IRENA (2019b), Renewable Cost Database, 2019.

IRENA (2019c), Future of solar photovoltaic - Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

IRENA (2019d), Future of wind – Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

United Nations, Department of Economic and Social Affairs, Population Division (2019). World Population Prospects 2019, Online Edition. Rev. 1.

WHO (2019), WHO Global Ambient Air Quality Database (update 2018), World Health Organization, www.who.int/airpollution/data/cities/en/ (accessed 5 March 2020).

World Bank Group (2019a), Access to electricity (% of population), World Bank Group.

World Bank Group (2019b), Access to clean fuels and technologies for cooking (% of population), World Bank Group.

ENERGY TRANSFORMATION SUB-SAHARAN AFRICA

Regional analysis extends from the Sahel region to the continent's southernmost tip, in addition to associated island countries.

STATUS/CHARACTERISTICS AND NEEDS:

IRENA analysis based on E3ME.

Current: 2050 outlook: Well below the global average (10.9).

Swift development; PES: CAGR = 3.2%

IRENA analysis based on E3ME.

Source: Access to electricity, 2017 values (World Bank Group, 2019a), access to clean cooking, 2016 values (World Bank Group, 2019b), TFEC, 2017 values (IEA, 2019).

Fossil fuel net import	Current status:	Holds over half the oil and gas reserves of the African continent. Bioenergy dominates the primary energy mix, accounting for 60% of primary energy demand but the share of energy supply from modern renewables is only about 10%.
low	2050 outlook:	 Rising air pollution and resource challenges; Vast untapped renewable energy potential. PES: The total generation (est. 975 TWh) just represents 1% of overall renewable power potential.

Note: Current status, IRENA analysis based on proportion of net imports of fossil fuels in TPES, 2017 values (IEA, 2019). 2050 outlook, IRENA analysis and potential based on Deng *et al.* (2015).

Energy-intensive industries (% in global consumption)	Current status:	Only a tiny share (1%) of global consumption comes from the region's energy intensive industries.
2017	2050 outlook:	With accelerated demand growth, low carbon technologies will play a key role.

IRENA analysis based on 2017 values (IEA, 2019).

Note: 2050 values based on IRENA analysis and historical data based on Global Carbon Atlas (2019).

Deteriorating urban air quality, with some cities having fine particle pollution (PM 2.5) among highest in world (dataset limited to 4 cities). **Indoor biomass combustion causes thousands of premature deaths each year.**

IRENA analysis based on PM 2.5 concentration, 2016 and 2017 values (WHO, 2019).

Electricity prices and renewables costs

Electricity price:

Lower range for households and **mid-range** for industries (compared to other regions). The prices are very high compared to the average income.

Renewable cost and auctions:

Decentralised mini-grid systems attractive to reach rural/remote populations.

LCOE based on IRENA (2019a) and electricity prices based on Global Petrol Prices (2019).

Note: The LCOE data is for projects commissioned in 2018. Real weighted average cost of capital (WACC) is 7.5% for OECD countries and China and 10% for the rest of the world.

Sub-Saharan Africa

ENERGY TRANSFORMATION: KEY BENEFITS

- Economic growth leading to poverty alleviation
- Distributed power for isolated communities and local job creation
- Transformative health and education impacts

INVESTMENTS TO BOOST ENERGY SECURITY

- Reduced network losses, improved financial performance
- Long-term finance for capital-intensive projects

Robust regulatory frameworks

CLEAN AIR, LOWER EMISSIONS

- Minimised reliance on traditional fuelwood
- Use of modern energy for productive uses
- Clean cooking and electricity access

ENERGY TRANSFORMATION ROADMAP TO 2050

	Where we are hea			eading	Where we need to be			
🔵 Sub-Saharan Africa	2017	2030 (PES)	2040 (PES)	2050 (PES)	2030 (TES)	2040 (TES)	2050 (TES)	
Energy (EJ)								
Supply (TPES)	25	17	19	20	15	22	31	
Consumption (TFEC)	18	12	13	13	9	17	26	
Renewables shares (modern)								
Supply (TPES)	7%	24%	29%	34%	43%	75%	89%	
Consumption (TFEC)	8%	22%	26%	29%	42%	72%	86%	
Power generation	26%	48%	53%	51%	67%	88%	95%	
Electricity share in final energy co	onsumpti	on						
End-use consumption	7%	16%	20%	23%	23%	33%	48%	
Industry	26%	27%	28%	29%	31%	23%	29%	
Transport	1%	1%	1%	1%	2%	23%	54%	
Buildings	4%	26%	43%	58%	57%	78%	89%	
Renewable installed capacity (GW	V)							
Bioenergy	1	7	10	12	11	27	56	
Hydropower	27	44	72	54	55	95	108	
Solar PV	3	49	69	85	79	255	548	
Wind	3	20	28	35	33	131	314	
Biofuels								
Liquid biofuels (billions of litres per year)	0.04	8	10	12	13	17	21	
Energy consumption per capita	(GJ/capi	ta)						
Consumption (TFEC) per capita	18	8	7	6	6	9	12	
CO ₂ emissions (energy-related)								
Annual level (Gt CO ₂ /yr)	0.8	0.8	1.0	1.0	0.6	0.5	0.3	
Reduction vs. today	NA	6%	24%	26%	-24%	-35%	-60%	

Note: The findings presented in the table are based on IRENA's REmap (Renewable Energy Roadmap) approach which is consistent with the Paris climate targets. In addition, IRENA has also been conducting in-depth power sector analysis and long-term planning on the African continent, using a capacity expansion modelling tool that IRENA developed for 47 African countries - the SPLAT model. For more details, please visit https://irena.org/energytransition/Energy-Planning-Support/System-Planning-Test-Model

	Where we are heading	Where we need to be
Sub-Saharan Africa	Planned Energy Scenario 2016 - 2050 (PES)	Transforming Energy Scenario 2016-2050 (TES)

Energy system investments (average annual, 2016-50) USD billion/year

Power	17	56
– Renewable	7	34
– Non-renewable	4	4
- Power grids and system flexibility	6	18
Industry (RE + EE)	2	10
Transport (electrification + EE)	3	20
Buildings (RE + EE)	13	19
Biofuel supply	1	3
Renewable hydrogen – electrolysers	0.02	0.2

Note: RE = renewable energy; EE = energy efficiency

The findings in this report consider targets and developments as of April 2019. The wind and solar PV capacities in the Transforming Energy Scenario in 2030 in this report are slightly higher than the estimates presented in IRENA's reports (IRENA, 2019b; 2019c) which consider developments as of the third quarter of 2019.

SOCIO-ECONOMIC OUTLOOK TO 2050

Sub-Saharan Africa	2019e	2030	2050		
Population (thousands) region-wide	1065 761	1352421	1947 326		
GDP (USD 2015)					
GDP (million): PES	2 562 424	4 330 057	12 582 520		
GDP (million): TES	2 572 269	4 354 122	12 673 559		
GDP changes (million): TES vs. PES	9846	24 065	91 0 39		
GDP changes (%): TES vs. PES	0.4	0.6	0.7		
Per capita GDP (thousand): PES	2.4	3.2	6.5		
Per capita GDP (thousand): TES	2.4	3.2	6.5		
Employment					
Economy-wide employment (thousands)					
Employment: PES	280 021	307 757	337 215		
Employment: TES	279 997	307 688	337 240		
Employment changes: TES vs. PES	-23	-69	25		
Employment changes (%): TES vs. PES	-0.01%	-0.02%	0.01%		

Sub-Saharan Africa	2017	2030 (PES)	2050 (PES)	2030 (TES)	2050 (TES)

Energy sector jobs (thousands)

Nuclear power	6	3	3	1	2
Fossil fuels	3 122	3060	2753	2929	2 4 8 9
Renewables	306	442	519	859	2 0 2 3
Energy efficiency	506	758	801	1 217	1016
Power grids and energy flexibility	313	462	502	462	694
Total	4 253	4 725	4 577	5 468	6 224
Energy jobs in economy-wide employment (%)		1.5%	1.4%	1.8%	1.8%

Renewable energy jobs (thousands)

Bioenergy	176	243	279	581	1270
Solar	44	97	135	154	583
Hydropower	71	76	64	91	111
Wind	14	25	37	30	57
Geothermal	1	2	3	3	3
Ocean	0	0	0	0	0
Total	306	442	519	859	2 0 2 3
Renewable energy jobs in energy-sector employment (%)		9.4%	11.3%	15.7%	32.5%

Job differential in 2050 (thousands) TES vs. PES

Economy-wide	25
Changes in conventional energy (A)	-265
Changes in transition related technologies (B)	
Net jobs (A+B)	1647

2050

Technology jobs (thousands)		Segment value chain (thousands)		Occupational requirements (thousands)	
				•	
Solar PV	257	Construction & installation	380	Workers and technicians	532
Solar water heaters (SWH)	311	Manufacturing	95	Experts	44
Onshore wind	57	Operation and maintenance	153	Engineers and higher degrees	39
Offshore wind	0	Biofuel supply	-	Marketing and administrative	13
Geothermal	3				
Total	628		628		628

🕨 Jobs in 2050: TES / 🌒 Sub-Saharan Africa

Welfare improvement ((%):
TES vs. PES	

-			
Indicator			
Economic	0.0	0.1	
Social	4.2	9.2	
Environmental	1.9	4.2	
Total	6.2	13.5	

2030

REFERENCES:

Deng, Y., Haigh, M., Pouwels, W., Ramaekers, L., Brandsma, R., Schimschar, S., Grözinger, J. & de Jager, D. (2015), *Quantifying a realistic, worldwide wind and solar electricity supply*, Global Environmental Change 31, 239-52, https://doi.org/10.1016/j.gloenvcha.2015.01.005. Global Carbon Atlas (2019), *Global Carbon Atlas – CO₂ emissions*, https://doi.org/10.5194/essd-11-1675-2019. Global Petrol Prices (2019), *Electricity prices around the world*.

www.globalpetrolprices.com/electricity_prices/ (accessed 5 March 2020).

IEA (2019), IEA Beyond 20/20 - 2019 edition, International Energy Agency, Paris.

IRENA (2019a), Renewable Cost Database, 2019.

IRENA (2019b), Future of solar photovoltaic – Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

IRENA (2019c), Future of wind - Deployment, investment, technology, grid integration

and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

WHO (2019), *WHO Global Ambient Air Quality Database* (update 2018), World Health Organization, www.who.int/airpollution/data/cities/en/ (accessed 5 March 2020).

World Bank Group (2019a), Access to electricity (% of population), World Bank Group.

World Bank Group (2019b), Access to clean fuels and technologies for cooking (% of population), World Bank Group.