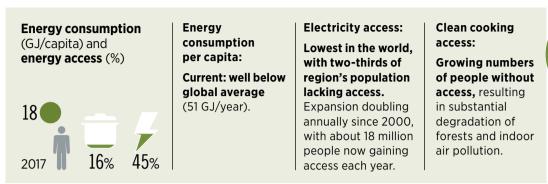

ENERGY TRANSFORMATION SUB-SAHARAN AFRICA

Regional analysis extends from the Sahel region to the continent's southernmost tip, in addition to associated island countries.

STATUS/CHARACTERISTICS AND NEEDS:

IRENA analysis based on E3ME.



Current: 2050 outlook: Well below the global average (10.9).

Swift development; PES: CAGR = 3.2%

IRENA analysis based on E3ME.

Source: Access to electricity, 2017 values (World Bank Group, 2019a), access to clean cooking, 2016 values (World Bank Group, 2019b), TFEC, 2017 values (IEA, 2019), 2050 values based on IRENA analysis.

Fossil fuel net import	Current status:	Holds over half the oil and gas reserves of the African continent. Bioenergy dominates the primary energy mix, accounting for 60% of primary energy demand but the share of energy supply from modern renewables is only about 10%.
low	2050 outlook:	 Rising air pollution and resource challenges; Vast untapped renewable energy potential. PES: The total generation (est. 975 TWh) just represents 1% of overall renewable power potential.

Note: Current status, IRENA analysis based on proportion of net imports of fossil fuels in TPES, 2017 values (IEA, 2019). 2050 outlook, IRENA analysis and potential based on Deng *et al.* (2015).

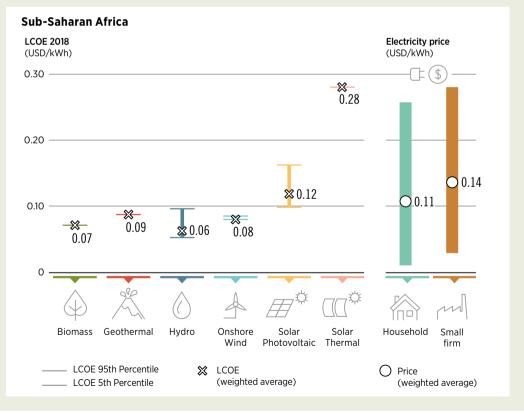
Energy-intensive industries (% in global consumption)	Current status:	Only a tiny share (1%) of global consumption comes from the region's energy intensive industries.
2017	2050 outlook:	With accelerated demand growth, low carbon technologies will play a key role.

IRENA analysis based on 2017 values (IEA, 2019).

Note: 2050 values based on IRENA analysis and historical data based on Global Carbon Atlas (2019).

Deteriorating urban air quality, with some cities having fine particle pollution (PM 2.5) among highest in world (dataset limited to 4 cities). **Indoor biomass combustion causes thousands of premature deaths each year.**

IRENA analysis based on PM 2.5 concentration, 2016 and 2017 values (WHO, 2019).


Electricity prices and renewables costs

Electricity price:

Lower range for households and **mid-range** for industries (compared to other regions). The prices are very high compared to the average income.

Renewable cost and auctions:

Decentralised mini-grid systems attractive to reach rural/remote populations.

LCOE based on IRENA (2019a) and electricity prices based on Global Petrol Prices (2019).

Note: The LCOE data is for projects commissioned in 2018. Real weighted average cost of capital (WACC) is 7.5% for OECD countries and China and 10% for the rest of the world.

Sub-Saharan Africa

ENERGY TRANSFORMATION: KEY BENEFITS

- Economic growth leading to poverty alleviation
- Distributed power for isolated communities and local job creation
- Transformative health and education impacts

INVESTMENTS TO BOOST ENERGY SECURITY

- Reduced network losses, improved financial performance
- Long-term finance for capital-intensive projects

Robust regulatory frameworks

CLEAN AIR, LOWER EMISSIONS

- Minimised reliance on traditional fuelwood
- Use of modern energy for productive uses
- Clean cooking and electricity access

ENERGY TRANSFORMATION ROADMAP TO 2050

Sub-Saharan Africa	2017	Where 2030	we are h 2040	eading 2050	Where 2030	e we need 2040	d to be 2050
		(PES)	(PES)	(PES)	(TES)	(TES)	(TES)
Energy (EJ)	•						
Supply (TPES)	25	17	19	20	13	24	35
Consumption (TFEC)	18	12	13	13	9	17	26
Renewables shares (modern)		-					
Supply (TPES)	7%	24%	29%	34%	43%	75%	89%
Consumption (TFEC)	8%	22%	26%	29%	42%	72%	86%
Power generation	26%	48%	53%	51%	67%	88%	95%
Electricity share in final energy	consumpti	on					
End-use consumption	7%	16%	20%	23%	23%	33%	48%
Industry	26%	27%	28%	29%	31%	23%	29%
Transport	1%	1%	1%	1%	2%	20%	47%
Buildings	4%	26%	43%	58%	57%	78%	89%
Renewable installed capacity (G	iW)						
Bioenergy	1	7	10	12	11	27	56
Hydropower	27	44	72	54	55	95	108
Solar PV	3	49	69	85	79	255	548
Wind	3	20	28	35	33	131	314
Biofuels							
Liquid biofuels (billions of litres per year)	0.04	8	10	12	13	17	21
CO ₂ emissions (energy-related)						
Annual level (Gt CO ₂ /yr)	0.8	0.8	1.0	1.0	0.6	0.5	0.3
Reduction vs. today	NA	6%	24%	26%	-24%	-35%	-60%

Note: The findings presented in the table are based on IRENA's REmap (Renewable Energy Roadmap) approach which is consistent with the Paris climate targets. In addition, IRENA has also been conducting in-depth power sector analysis and long-term planning on the African continent, using a capacity expansion modelling tool that IRENA developed for 47 African countries - the SPLAT model. For more details, please visit https://irena.org/energytransition/Energy-Planning-Support/System-Planning-Test-Model

Energy system investments (average annual, 2016-50) USD billion/year

Power	17	56
– Renewable	7	34
– Non-renewable	4	4
– Power grids and system flexibility	6	18
Industry (RE + EE)	2	10
Transport (electrification + EE)	3	20
Buildings (RE + EE)	13	19
Biofuel supply	1	3
Renewable hydrogen – electrolysers	0.02	0.2

Note: RE = renewable energy; EE = energy efficiency

The findings in this report consider targets and developments as of April 2019. The wind and solar PV capacities in the Transforming Energy Scenario in 2030 in this report are slightly higher than the estimates presented in IRENA's reports (IRENA, 2019b; 2019c) which consider developments as of the third quarter of 2019.

SOCIO-ECONOMIC OUTLOOK TO 2050

Sub-Saharan Africa	2019e	2030	2050
Population (thousands) region-wide	1065761	1352 421	1947 326
GDP (USD 2015)			
GDP (million): PES	2 562 424	4 330 057	12 582 520
GDP (million): TES	2 572 269	4 354 122	12 673 559
GDP changes (million): TES vs. PES	9846	24 065	91 0 3 9
GDP changes (%): TES vs. PES	0.4	0.6	0.7
Per capita GDP (thousand): PES	2.4	3.2	6.5
Per capita GDP (thousand): TES	2.4	3.2	6.5
Employment			
Economy-wide employment (thousands)			
Employment: PES	280 021	307 757	337 215
Employment: TES	279 997	307 688	337 240
Employment changes: TES vs. PES	-23	-69	25
Employment changes (%): TES vs. PES	-0.01%	-0.02%	0.01%

Sub-Saharan Africa	2017	2030 (PES)	2050 (PES)	2030 (TES)	2050 (TES)

Energy sector jobs (thousands)

Nuclear power	6	3	3	1	2
Fossil fuels	3 122	3060	2753	2 929	2 4 8 9
Renewables	306	442	519	859	2 0 2 3
Energy efficiency	506	758	801	1 217	1016
Power grids and energy flexibility	313	462	502	462	694
Total	4 253	4725	4 577	5 468	6 224
Energy jobs in economy-wide employment (%)		1.5%	1.4%	1.8%	1.8%

Renewable energy jobs (thousands)

Bioenergy	176	243	279	581	1270
Solar	44	97	135	154	583
Hydropower	71	76	64	91	111
Wind	14	25	37	30	57
Geothermal	1	2	3	3	3
Ocean	0	0	0	0	0
Total	306	442	519	859	2 0 2 3
Renewable energy jobs in energy-sector employment (%)		9.4%	11.3%	15.7%	32.5%

Job differential in 2050 (thousands) TES vs. PES

Economy-wide	25
Changes in conventional energy (A)	-265
Changes in transition related technologies (B)	1 911
Net jobs (A+B)	1647

2050

Technology jobs (thousands)		Segment valu (thousand		Occupational requirements (thousands)		
Solar PV	257	Construction & installation	380	Workers and technicians	532	
Solar water heaters (SWH)	311	Manufacturing	95	Experts	44	
Onshore wind	57	Operation and maintenance	153	Engineers and higher degrees	39	
Offshore wind	0	Biofuel supply	-	Marketing and administrative	13	
Geothermal	3					
Total	628		628		628	

🕨 Jobs in 2050: TES / 🌒 Sub-Saharan Africa

Welfare improvement (%):
TES vs. PES

Indicator		
Economic	0.0	0.1
Social	4.2	9.2
Environmental	1.9	4.2
Total	6.2	13.5

2030

REFERENCES:

Deng, Y., Haigh, M., Pouwels, W., Ramaekers, L., Brandsma, R., Schimschar, S., Grözinger, J. & de Jager, D. (2015), *Quantifying a realistic, worldwide wind and solar electricity supply*, Global Environmental Change 31, 239-52, https://doi.org/10.1016/j.gloenvcha.2015.01.005. Global Carbon Atlas (2019), *Global Carbon Atlas – CO₂ emissions*, https://doi.org/10.5194/essd-11-1675-2019. Global Petrol Prices (2019), *Electricity prices around the world*.

www.globalpetrolprices.com/electricity_prices/ (accessed 5 March 2020).

IEA (2019), IEA Beyond 20/20 - 2019 edition, International Energy Agency, Paris.

IRENA (2019a), Renewable Cost Database, 2019.

IRENA (2019b), Future of solar photovoltaic – Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

IRENA (2019c), Future of wind - Deployment, investment, technology, grid integration

and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

WHO (2019), *WHO Global Ambient Air Quality Database* (update 2018), World Health Organization, www.who.int/airpollution/data/cities/en/ (accessed 5 March 2020).

World Bank Group (2019a), Access to electricity (% of population), World Bank Group.

World Bank Group (2019b), Access to clean fuels and technologies for cooking (% of population), World Bank Group.