ENERGY TRANSFORMATION NORTH AMERICA

Regional analysis covers three countries:

• Canada

Mexico

United States

STATUS/CHARACTERISTICS AND NEEDS:

Population (millions)

492

2018

591

2050

Current: 6.5% of global population,

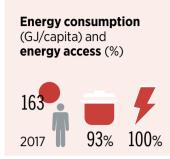
mainly in the United States (67%), Mexico (26%)

and Canada (7%).

2050 Average 0.6% per year increase to 591 million,

outlook: or 6.3% of global population.

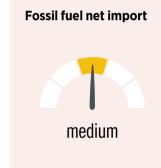
IRENA analysis based on E3ME.


GDP per capita (thousand USD 2015)

44.1 2019 71.4 2050 Current: Well above the global average (10.9).

2050 Slight development; outlook: PES: CAGR = 1.6%

IRENA analysis based on E3ME.

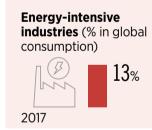

Energy consumption per capita:
Current: well above the global average (51 GJ/year).

Electricity access: Achieved in all the countries.

access:
Near 100%
except in
Mexico (93%).

Clean cooking

Source: Access to electricity, 2017 values (World Bank Group, 2019a), access to clean cooking, 2016 values (World Bank Group, 2019b), TFEC, 2017 values (IEA, 2019).


Current status:

Largely self-sufficient; US, while still a net importer of crude oil, exports refined oil products and natural gas; Canada and Mexico have significant oil and gas reserves.

2050 outlook: Continued negative health effects due to rising fossil fuel use; considerable untapped renewable potential.

PES: The total generation (est. 7071 TWh) represents 13% of overall renewable power potential.

Note: Current status, IRENA analysis based on proportion of net imports of fossil fuels in TPES, 2017 values (IEA, 2019). 2050 outlook, IRENA analysis and potential based on Deng *et al.* (2015).

Current status:

Over one-third of global paper energy demand is found in the region, as well as around

one-fifth of global **chemical and petrochemical** and **food and tobacco** energy consumption.

2050 outlook: **Urgent need for emissions reduction** in heavy industries.

IRENA analysis based on 2017 values (IEA, 2019).

Energy-related CO₂
emissions per capita
(tCO₂/capita)

12.8
11.7
2018
2050

Recent:

Region's annual emissions: 6.3 Gt (2018). 19% of global energy-related CO₂ emissions.

2050 outlook:

- PES: 8% increase to 6.8 Gt based on current policies.
- More renewables and continuing switch from coal to natural gas mitigate increase.

Note: 2050 values based on IRENA analysis and historical data based on Global Carbon Atlas (2019).

Urban air quality (%)

- 80% urban population, often concentrated in large cities.
- Air pollution at moderate to unhealthy levels in 18% of cities mainly due to transport sector emissions.

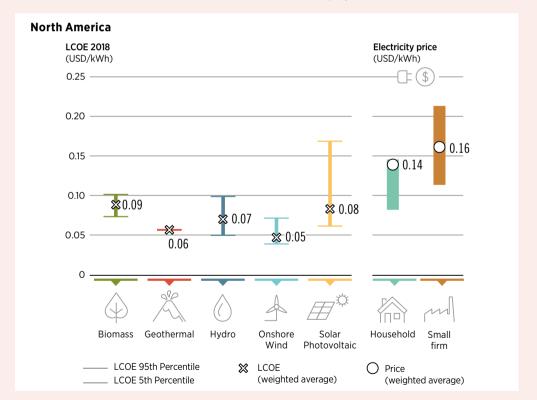
IRENA analysis based on PM 2.5 concentration, 2016 and 2017 values (WHO, 2019).

Electricity prices and renewables costs

Electricity price:

Above the global average for both households and

industries.


Renewable power costs:

Competitive or least-cost compared to coal or natural gas, with solar PV averaging USD 0.08 cents/kWh and wind USD 0.05/kWh (2018).

Auction prices:

Lower than other regions;

new solar projects achieve around USD 0.02-0.03/kWh, and new wind projects around USD 0.03-0.04/kWh.

LCOE based on IRENA (2019a) and electricity prices based on Global Petrol Prices (2019).

Note: The LCOE data is for projects commissioned in 2018. Real weighted average cost of capital (WACC) is 7.5% for OECD countries and China and 10% for the rest of the world.

ENERGY TRANSFORMATION: KEY BENEFITS

CUTTING-EDGE INNOVATION

- Advanced manufacturing and services
- Reduced energy system costs
- ▶ High-value job creation

ENERGY SECURITY

- ▶ Regional energy self-sufficiency
- ▶ High energy efficiency
- Renewable power and end-use applications
- Improved interconnections

SOCIO-ECONOMIC DEVELOPMENT

- Economic growth
- Higher economy-wide and energy sector jobs
- Improved environment and well-being

ENERGY TRANSFORMATION ROADMAP TO 2050

		Where	we are h	eading	Where	we need	d to be
North America	2017	2030 (PES)	2040 (PES)	2050 (PES)	2030 (TES)	2040 (TES)	2050 (TES)
Energy (EJ)							
Supply (TPES)	112	116	120	127	90	86	82
Consumption (TFEC)	79	86	89	93	69	64	58
Renewables shares (modern)							
Supply (TPES)	10%	13%	14%	17%	30%	50%	67%
Consumption (TFEC)	10%	12%	13%	15%	29%	48%	68%
Power generation	23%	30%	33%	38%	60%	79%	85%
Electricity share in final energy of	onsumpti	on					
End-use consumption	20%	21%	21%	22%	28%	40%	52%
Industry	20%	19%	19%	19%	20%	25%	28%
Transport	0.2%	1%	2%	2%	13%	35%	57%
Buildings	48%	48%	49%	50%	54%	63%	78%
Renewable installed capacity (G	W)						
Bioenergy	16	19	18	30	22	26	25
Hydropower	177	182	198	238	180	192	204
Solar PV	45	153	296	512	485	1054	1728
Wind	104	174	189	191	448	946	1314
Biofuels							
Liquid biofuels (billions of litres per year)	64	63	62	70	96	144	183
CO ₂ emissions (energy-related))						
Annual level (Gt CO ₂ /yr)	6.2	6.6	6.7	6.8	3.7	2.5	1.4
Reduction vs. today	NA	7%	8%	10%	-41%	-59%	-77%

North America

Where we are heading Planned Energy Scenario 2016 - 2050 (PES)

Where we need to be Transforming Energy Scenario 2016-2050 (TES)

Energy system investments (average annual, 2016-50) USD billion/year

Power	117	195
- Renewable	31	108
– Non-renewable	45	22
- Power grids and system flexibility	41	65
Industry (RE + EE)	18	27
Transport (electrification + EE)	29	97
Buildings (RE + EE)	118	177
Biofuel supply	0.5	5.9
Renewable hydrogen – electrolysers	0.05	2.1

The findings in this report consider targets and developments as of April 2019. The wind and solar PV capacities in the Transforming Energy Scenario in 2030 in this report are slightly higher than the estimates presented in IRENA's reports (IRENA, 2019b; 2019c) which consider developments as of the third quarter of 2019.

SOCIO-ECONOMIC OUTLOOK TO 2050

North America	2019e	2019e 2030	
Population (thousands) region-wide	496 175	536 927	590 667
GDP (USD 2015)			
GDP (million): PES	21 913 288	27 877 680	42 199 950
GDP (million): TES	22 188 303	28 117 917	42 814 939
GDP changes (million): TES vs. PES	275 016	240 237	614 990
GDP changes (%): TES vs. PES	1.3	0.9	1.5
Per capita GDP (thousand): PES	44.2	51.9	71.4
Per capita GDP (thousand): TES	44.7	52.4	72.5

Employment

Economy-wide employment (thousands)

Leonomy was employment (chousands)					
Employment: PES	250 014	279 310	288 609		
Employment: TES	251639	281 435	291621		
Employment changes: TES vs. PES	1625	2125	3 012		
Employment changes (%): TES vs. PES	0.05	-0.33	-0.16		

) 6 2 3 5 3 3	69 1380 1197 3 945 572 7163 2.56%	53 1318 1367 3363 510 6610 2.29%	71 1053 2335 6058 656 10174 3.61%	18 816 2987 3805 837 8463	
6 2 3 5	1380 1197 3 945 572 7 163	1318 1367 3 363 510 6 610	1053 2335 6058 656 10174	816 2 987 3 805 837 8 463	
6 2 3 5	1380 1197 3 945 572 7 163	1318 1367 3 363 510 6 610	1053 2335 6058 656 10174	816 2 987 3 805 837 8 463	
2 3 5	1197 3 945 572 7163	1367 3 363 510 6 610	2 335 6 058 656 10 174	2 987 3 805 837 8 463	
3 5	3 945 572 7 163	3 363 510 6 610	6 058 656 10 174	3 8 0 5 8 3 7 8 4 6 3	
5	572 7163	510 6 610	656 10 174	837 8463	
	7163	6 610	10 174	8 463	
35					
	2.56%	2.29%	3.61%	2.90%	
9	431	422	625	764	
9	390	601	1137	1520	
, <u> </u>	127	121	135	125	
4	202	174	386	512	
3	47	49	52	61	
	-	-	0	5	
2	1197	1367	2 3 3 5	2 987	
	16.7%	20.7%	23.0%	35.3%	
Job differential in 2050 (thousands) TES vs. PES					
Economy-wide					
Changes in conventional energy (A)					
Changes in transition related technologies (B)					
Net jobs (A+B)					
	1 1 2 2	390 127 4 202 47 - 2 1197 16.7%	390 601 127 121 4 202 174 4 47 49 	390 601 1137 127 121 135 4 202 174 386 4 47 49 52 0 2 1197 1367 2335 16.7% 20.7% 23.0%	

15.5

Jobs in 2050: TES / North America

Technology (thousan		Segment value chain Occ (thousands)		Occupational requirements (thousands)	
Solar PV	991	Construction & installation	915	Workers and technicians	1639
Solar water heaters (SWH)	516	Manufacturing	561	Experts	199
Onshore wind	462	Operation and maintenance	604	Engineers and higher degrees	174
Offshore wind	49	Biofuel supply	-	Marketing and administrative	67
Geothermal	61				
Total	2 079		2 079		2 0 7 9

TES vs. PES	2030	2050		
Indicator				
Economic	0.3	0.6		
Social	4.0	8.4		
Environmental	3.3	6.5		

REFERENCES:

Total

Deng, Y., Haigh, M., Pouwels, W., Ramaekers, L., Brandsma, R., Schimschar, S., Grözinger, J. & de Jager, D. (2015), *Quantifying a realistic, worldwide wind and solar electricity supply*, Global Environmental Change 31, 239-52, https://doi.org/10.1016/j.gloenvcha.2015.01.005.

7.7

Global Carbon Atlas (2019), Global Carbon Atlas - CO2 emissions, https://doi.org/10.5194/essd-11-1675-2019.

Global Petrol Prices (2019), Electricity prices around the world,

www.globalpetrolprices.com/electricity_prices/ (accessed 5 March 2020).

IEA (2019), IEA Beyond 20/20 - 2019 edition, International Energy Agency, Paris.

IRENA (2019a), Renewable Cost Database, 2019.

IRENA (2019b), Future of solar photovoltaic – Deployment, investment, technology, grid integration and socio-economic aspects. International Renewable Energy Agency, Abu Dhabi.

IRENA (2019c), Future of wind – Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi. WHO (2020), Air pollution – Overview, World Health Organization, www.who.int/westernpacific/health-topics/air-pollution (accessed 6 March 2020).

WHO (2019), WHO Global Ambient Air Quality Database (update 2018), World Health Organization, www.who.int/airpollution/data/cities/en/ (accessed 5 March 2020).

World Bank Group (2019a), Access to electricity (% of population), World Bank Group.

World Bank Group (2019b), Access to clean fuels and technologies for cooking (% of population), World Bank Group.