ENERGY TRANSFORMATION **REST OF EUROPE**

Regional analysis covers:

- Albania
- Andorra
- Belarus
- Bosnia and Herzegovina
 Norway
- Iceland

- Liechtenstein
- Monaco
- Montenegro
- - Republic of Moldova
- Russian Federation
- Serbia
- Switzerland
- North Macedonia
- Ukraine

STATUS/CHARACTERISTICS AND NEEDS:

Current: 2050 outlook: **3% of global population,** mainly in the Russian Federation (61%) and Ukraine (19%).

Average 0.3% per year decrease to 208 million, or 2.2% of global population.

IRENA analysis based on E3ME.

Current: Above the global average (10.9). 2050 Slight development; outlook: **PES:** CAGR = 1.5%

IRENA analysis based on E3ME.

Energy consumption (GJ/capita) and energy access (%)	Energy consumption per capita: Current: well above	Electricity access: The region has long achieved full	Clean cooking access: 8% lacks; marginal use of inefficient
99 2017 92% 100%	the global average (51 GJ/year).	electrification.	biomass stoves for cooking and home heating continues, mainly in rural areas.

Source: Access to electricity, 2017 values (World Bank Group, 2019a), access to clean cooking, 2016 values (World Bank Group, 2019b), TFEC, 2017 values (IEA, 2019), 2050 values based on IRENA analysis.

Fossil fuel net import	Current status:	Net fossil-fuel exporter, mainly due to the Russian Federation, the world's largest oil and gas exporter,
		covering almost 6% of energy consumption in the rest of the world (2018).
low	2050 outlook:	 Vast untapped renewable potential. PES: The total generation (est. 1997 TWh) represents 7% of overall renewable power potential.

Source: IRENA analysis based on proportion of net imports of fossil fuels in TPES, 2017 values (IEA, 2019). 2050 outlook, IRENA analysis and potential based on Deng *et al.* (2015).

Energy-intensive industries (% in global consumption)	Current status:	Accounts for over 11% of global energy demand for iron and steel, around 8% for chemical and petrochemical industries and 7% for food and tobacco.
2017	2050 outlook:	Need for alternative emission-free technological solutions.

Note: Current status, IRENA analysis based on 2017 values (IEA, 2019).

Note: 2050 values based on IRENA analysis and historical data based on Global Carbon Atlas (2019).

Air pollution is problematic for some countries, such as in Southeast Europe, which have high levels of PM 2.5 compared to Norway and Switzerland that have better air quality.

IRENA analysis based on PM 2.5 concentration, 2016 and 2017 values (WHO, 2019).

Electricity prices and renewables costs

Electricity price:

Renewables cost and auctions:

Among the lowest in the world, only in MENA is lower. Similar to Rest of Asia. Average prices for historical projects are around USD 0.08/kWh and USD 0.05/kWh for solar and wind, respectively.

LCOE based on IRENA (2019a) and electricity prices based on Global Petrol Prices (2019).

Note: The LCOE data is for projects commissioned in 2018. Real weighted average cost of capital (WACC) is 7.5% for OECD countries and China and 10% for the rest of the world.

ENERGY ⁻	TRANSFORM	ATION RO	ADMAP 1	FO 2050
---------------------	-----------	----------	---------	---------

		Where	we are h	leading	Where	e we need	d to be
Rest of Europe	2017	2030 (PES)	2040 (PES)	2050 (PES)	2030 (TES)	2040 (TES)	2050 (TES)
Energy (EJ)							
Supply (TPES)	39	46	46	47	38	36	33
Consumption (TFEC)	24	29	30	30	23	21	18
Renewables shares (modern)							
Supply (TPES)	6%	10%	10%	12%	19%	34%	54%
Consumption (TFEC)	7%	9%	11%	12%	20%	37%	61%
Power generation	27%	28%	28%	31%	42%	63%	82%
Electricity share in final energy of	consumpti	ion					
End-use consumption	18%	18%	20%	22%	23%	28%	38%
Industry	20%	22%	24%	25%	27%	30%	35%
Transport	6%	6%	8%	12%	12%	21%	37%
Buildings	21%	24%	26%	28%	28%	33%	42%
Renewable installed capacity (G	W)						
Bioenergy	2	3	6	17	27	56	83
Hydropower	111	105	95	94	127	140	157
Solar PV	3	25	25	38	39	58	107
Wind	2	16	31	45	33	57	79
Biofuels							
Liquid biofuels (billions of litres per year)	1	12	18	23	22	34	47
CO ₂ emissions (energy-related))						
Annual level (Gt CO ₂ /yr)	2	2.4	2.3	2.3	1.6	1.2	0.7
Reduction vs. today	NA	17%	15%	12%	-19%	-42%	-68%

)	Annual level (Gt CO ₂ /yr)	2	2.4	2.3	2.3	1.6	1.2	
	Reduction vs. today	NA	17%	15%	12%	-19%	-42%	

	Where we are heading	Where we need to be	
Rest of Europe	Planned Energy Scenario 2016 - 2050	Transforming Energy Scenario 2016-2050	
	(PES)	(TES)	

Energy system investments (average annual, 2016-50) USD billion/year

Power	25	33
– Renewable	4	21
– Non-renewable	16	5
- Power grids and system flexibility	5	6
Industry (RE + EE)	5	7
Transport (electrification + EE)	12	20
Buildings (RE + EE)	57	83
Biofuel supply	2	8
Renewable hydrogen – electrolysers	0.1	1

Note: RE = renewable energy; EE = energy efficiency

The findings in this report consider targets and developments as of April 2019. The wind and solar PV capacities in the Transforming Energy Scenario in 2030 in this report are slightly higher than the estimates presented in IRENA's reports (IRENA, 2019b; 2019c) which consider developments as of the third quarter of 2019.

SOCIO-ECONOMIC OUTLOOK TO 2050

Rest of Europe	2019e	2030	2050	
Population (thousands) region-wide	230 174	223 224	208 212	
GDP (USD 2015)				
GDP (million): PES	2 991 058	3 242 176	4 289 467	
GDP (million): TES	3 150 705	3181845	4 356 940	
GDP changes (million): TES vs. PES	159 647	-60 332	67 473	
GDP changes (%): TES vs. PES	5.3	-1.9	1.6	
Per capita GDP (thousand): PES	13.0	14.5	20.6	
Per capita GDP (thousand): TES	13.7	14.3	20.9	
Employment				
Economy-wide employment (thousands)				
Employment: PES	144 339	148 766	154 839	
Employment: TES	144 472	148 635	154 527	
Employment changes: TES vs. PES	133	-131	-313	
Employment changes (%): TES vs. PES	0.09%	-0.09%	-0.20%	

Rest of Europe	2017	2030 (PES)	2050 (PES)	2030 (TES)	2050 (TES)
Energy sector jobs (thousands)					
Nuclear power	167	181	184	148	65
Fossil fuels	3 139	3 0 8 5	2962	2 771	2 407
Renewables	275	500	716	1044	1730
Energy efficiency	420	373	435	577	940
Power grids and energy flexibility	927	964	1001	978	1063
Total	4 928	5 103	5 298	5 518	6 205
Energy jobs in economy-wide employment (%)		3.4%	3.4%	3.7%	4.0%

Renewable energy jobs (thousands)

Bioenergy	97	228	395	579	1049
Solar	31	82	169	193	450
Hydropower	143	128	50	171	86
Wind	4	61	97	95	122
Geothermal	1	1	5	5	23
Ocean	0	0	0	0	0
Total	275	500	716	1044	1730
Renewable energy jobs in energy-sector employment (%)		9.8%	13.5%	18.9%	27.9%

Job differential in 2050 (thousands) TES vs. PES

Economy-wide	-313
Changes in conventional energy (A)	-674
Changes in transition related technologies (B)	1581
Net jobs (A+B)	908

·	• -	•			
Technology jobs (thousands)		Segment value chain (thousands)		Occupational requirements (thousands)	
Solar PV	311	Construction & installation	400	Workers and technicians	485
Solar water heaters (SWH)	138	Manufacturing	34	Experts	49
Onshore wind	122	Operation and maintenance	160	Engineers and higher degrees	53
Offshore wind	-	Biofuel supply	-	Marketing and administrative	8
Geothermal	23				
Total	594		594		594

Welfare	improvement	(%):

TES vs. PES	2030	2050	
Indicator			
Economic	(0.3)	0.2	
Social	4.2	7.8	
Environmental	2.1	4.5	
Total	6.0	12.4	

REFERENCES:

Deng, Y., Haigh, M., Pouwels, W., Ramaekers, L., Brandsma, R., Schimschar, S., Grözinger, J. & de Jager, D. (2015), *Quantifying a realistic, worldwide wind and solar electricity supply, Global Environmental Change 31, 239-52,* https://doi.org/10.1016/j.gloenvcha.2015.01.005.

Global Carbon Atlas (2019), *Global Carbon Atlas – CO₂ emissions*, https://doi.org/10.5194/essd-11-1675-2019. Global Petrol Prices (2019), *Electricity prices around the world*, www.globalpetrolprices.com/electricity_prices/

(accessed 5 March 2020).

IEA (2019), IEA Beyond 20/20 - 2019 edition, International Energy Agency, Paris.

IRENA (2019a), Renewable Cost Database, 2019.

IRENA (2019b), Future of solar photovoltaic - Deployment, investment, technology, grid integration and socioeconomic aspects, International Renewable Energy Agency, Abu Dhabi.

IRENA (2019c), Future of wind – Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

WHO (2019), WHO Global Ambient Air Quality Database (update 2018), World Health Organization,

www.who.int/airpollution/data/cities/en/ (accessed 5 March 2020).

World Bank Group (2019a), Access to electricity (% of population), World Bank Group.

World Bank Group (2019b), Access to clean fuels and technologies for cooking (% of population), World Bank Group.