

IRENA FlexT©I

TRAINING FOR ASEAN

SESSION 4: Modelling flexibility options, from the supply to the demand side

Flexibility options according to IRENA

Flexibility needs to be harnessed in all sectors of the energy system

Electricity Storage

Electricity Storage Valuation Framework

Modeling electricity storage in IRENA FlexTool

- Electricity storage is defined in "unit_type" sheet, with few additions compared to other generators:
 - Efficiency (%) Discharging efficiency
 - Eff.charge (%) Charging efficiency
 - Self discharge loss (% of content per hour) if any
- In "units" sheet the following is defined:
 - Capacity (MW) Installed capacity in MW
 - Storage (MWh) Maximum storage capacity in MWh
 - Storage start/finish Initial and final state of the storage
- If storage type is pumped hydro storage it is possible that the unit has a natural inflow, which could be defined in "ts_inflow" sheet

Investment mode for batteries

Two options: Fixed P/E ratio or free optimisation

Option 1: Fix power to energy ratio

- Model the batteries with a fixed power to energy ration, this is to say, with a fixed discharge duration (e.g., 2 hours or 4 hours batteries
- Only investment cost required is the one to invest in energy (battery cells)
- In this example the model would only consider 1 hour duration batteries in optimisation

unit type	inv.cost/kW	inv.cost/kWh	fixed kW/kWh ratio
battery		80	1.000

Option 2: Free optimisation of power and energy

- It is also possible to optimise separately power and energy
- In this case there is no need to defined a P/E ratio but an investment cost for power (inverter) and energy would be required

unit type	inv.cost/kW	inv.cost/kWh	fixed kW/kWh ratio
battery	20	80	

Electric Vehicles

Smart Charging of Electric Vehicles

VRE decarbonize the transport sector

Smart charging is key to take advantage of the synergies between clean transport and low carbon electricity

Modelling unidirectional charging of EVs

Pre-calculating demand profiles

- EVs as predefined demand profiles that are added on top of the original demand curve
- Three charging scenarios:
- Evening uncontrolled charging
 - As soon as EVs arrive home, they charge at maximum power
- Night controlled charging
 - Charge is distributed along the night
- (3) Day controlled charging
 - Charge coincides with the solar PV profile
- In FlexTool: Sum these profiles to the demand curve and add it in "ts_energy" sheet

— 2030 No EV —— 2030 EV

Modelling Vehicle-to-Grid in FlexTool (V2G)

Electromobility Grid

- Defined demand profile in "ts_energy" sheet
- This demand would represent discharge of battery because of mobility
- We need to estimate this demand

time period

- Reserves
- Existing software to estimate this

Define a unit that transfers energy from mobility grid to electricity grid and vice versa

$$P_{tot} = \alpha * \sum P_{Chargers}$$

$$E_{tot} = \alpha * \sum E_{battery}$$

 $\alpha = Simultaneity factor$

Discharge

Charge

Ancillary services

Electricity Grid

Power-to-hydrogen

Green hydrogen for the energy transition

Modelling Power-to-hydrogen in IRENA FlexTool

Hydrogen Grid

- Defined demand profile in "ts_energy" sheet
- This demand would represent hydrogen demand in the system

Hydrogen Storage

Other production methods

- Defined exactly the same as electricity storage but in hydrogen grid (see slides on electricity storage)
- In FlexTool a hydrogen network with different nodes could also be modelled
- In hydrogen grid other methods of hydrogen production can also be modelled in a simplified way
- Examples: steam methane reforming (SMR)

Electricity Grid

Electrolysers and Fuel Cells

- Unit that absorbs electricity and converts it to hydrogen to be used in that grid
- In "unit_type" define the main characteristics of the electrolyser depending on its chemistry
 - For example: efficiency ("conversion eff."), ramping capabilities, lifetime, etc.
- In "units" define installed capacity per node as with generators
- Main issue with electrolysers today is lack of real data about their characteristics

- Unit that absorbs hydrogen and converts it back to electricity
- In "unit_type" define main characteristics of the fuel cell. Note that efficiency is also "conversion eff."
- In "units" define installed capacity per node as with generators
- Likewise we can model a gas turbine or any other generator that uses hydrogen as an input

Transmission

Transfers, 1/2

- Transfers between nodes are defined in "nodeNode sheet"
 - Both nodes have to be from the same grid
 - Existing transfer links can have different capacity to different direction
 - Future investments will always have equal capacity to both directions

nodeNode sheet

Transfers, 2/2

- Transfer with losses requires at least two variables
 - A linear equation with 'loss x transfer' would mean that in the other direction loss is actually a gain
- The loss can be used to make the model 'leak'
 - Instead of curtailing VRE, the model can dissipate energy by transferring in two directions at once
 - Can be controlled only with a binary variable (not allowed in FlexTool)
- Hence, three variables: transfer, transfer rightward and transfer leftward
 - Transfer does not contain loss
 - Transfer rightward allows losses and helps to limit the leakage
 - Transfer leftward helps to limit the leakage further

Demand response

Demand-side flexibility for power sector transformation

} } § § § § § § § § § §	Power-to-heat	
(1)	Power-to-hydrogen	
	Electric vehicles	
	Smart appliances	
500	Industrial processes	

Industrial	Commercial	Residential
0	0	0
0	0	0
O	0	•
0	0	0
0	0	0

- The solution would be competitive/suitable in that end-use sector
- The solution is unlikely to be competitive/suitable in that end-use sector

Modeling demand response in the IRENA FlexTool

- Demand response is defined in "unit_type" sheet, as if it was a generator. Defined as:
 - Demand response increase Generator with negative price and empty charging efficiency
 - Demand response downwards Generator with positive price and efficiency

- In "units" sheet the following is defined:
 - Capacity (MW) If the demand response is an increase then negative maximum capacity and if it is to decrease then positive

www.irena.org

www.twitter.com/irena

www.facebook.com/irena.org

www.instagram.com/irenaimages

www.flickr.com/photos/irenaimages

www.youtube.com/user/irenaorg