Slovakia

COUNTRY INDICATORS AND SDGS

TOTAL ENERGY SUPPLY (TES)

Total Energy Supply (TES)	2016	2021
Non-renewable (TJ)	617 584	648 506
Renewable (TJ)	67 905	92 707
Total (TJ)	685 490	741 213
Renewable share (%)	10	13

Growth in TES	2016-21	2020-21
Non-renewable (%)	+5.0	+8.9
Renewable (%)	+36.5	+6.7
Total (%)	+8.1	+8.6

Primary energy trade	2016	2021
Imports (TJ)	634 766	639 154
Exports (TJ)	222 792	248 269
Net trade (TJ)	- 411 974	- 390 885
Imports (% of supply)	93	86
Exports (% of production)	84	86
Energy self-sufficiency (%)	39	39

Total energy supply in 2021

Renewable energy supply in 2021

RENEWABLE ENERGY CONSUMPTION (TFEC)

Renewable TFEC trend

Renewable energy consumption in 2021

ELECTRICITY CAPACITY

Installed capacity trend

Renewable capacity in 2023

Net capacity change in 2023 (MW)

Net capacity change (GW)

Capacity utilisation in 2022 (%)

ELECTRICITY GENERATION

Per capita electricity generation (kWh)

1 Compensation for electricity and gas providers of small off-takers 2023 2 Electricity and gas price caps for households

LATEST POLICIES, PROGRAMMES AND LEGISLATION

2017

2018

2019

2020

2021

2022

2023

2023

4 EUR 10 million for private sector investment in solar PV plants

5 Freezing of tariff for electricity transmission losses

Mt CO2 Emissions

3 Electricity and gas price caps for small energy off-takers

ENERGY AND EMISSIONS

RENEWABLE RESOURCE POTENTIAL

Distribution of wind potential

Biomass potential: net primary production

Indicators of renewable resource potential

Solar PV: Solar resource potential has been divided into seven classes, each representing a range of annual PV output per unit of capacity (kWh/kWp/yr). The bar chart shows the proportion of a country's land area in each of these classes and the global distribution of land area across the classes (for comparison).

Onshore wind: Potential wind power density (W/m²) is shown in the seven classes used by NREL, measured at a height of 100m. The bar chart shows the distribution of the country's land area in each of these classes compared to the global distribution of wind resources. Areas in the third class or above are considered to be a good wind resource.

Biomass: Net primary production (NPP) is the amount of carbon fixed by plants and accumulated as biomass each year. It is a basic measure of biomass productivity. The chart shows the average NPP in the country (tC/ha/yr), compared to the global average NPP of 3-4 tonnes of carbon

Additional notes: Capacity per capita and public investments SDGs only apply to developing areas. Energy self-sufficiency has been defined as total primary energy production divided by total primary energy supply. Energy trade includes all commodities in Chapter 27 of the Harmonised System (HS). Capacity utilisation is calculated as annual generation divided by year-end capacity x 8,760h/year. Avoided emissions from renewable power is calculated as renewable generation divided by fossil fuel generation multiplied by reported emissions from the power sector. This assumes that, if renewable power did not exist, fossil fuels would be used in its place to generate the same amount of power and using the same mix of fossil fuels. In countries and years where no fossil fuel generation occurs, an average fossil fuel emission factor has been used to calculate the avoided emissions.

Sources: IRENA statistics, plus data from the following sources: UN SDG Database (original sources: WHO; World Bank; IEA; IRENA; and UNSD); UN World Population Prospects; UNSD Energy Balances; UN COMTRADE; World Bank World Development Indicators; EDGAR; REN21 Global Status Report; IEA-IRENA Joint Policies and Measures

These profiles have been produced to provide an overview of developments in renewable energy in different countries and areas. The IRENA statistics team would welcome comments and feedback on its structure and content, which can be sent to statistics@irena.org.

Last updated on: 31 July, 2024

IRENA Headquarters Masdar City P.O. Box 236, Abu Dhabi United Arab Emirates www.irena.org