

Oceans powering the energy transition: Progress through innovative business models and revenue supports

Judit Hecke & Alessandra Salgado
Innovation team, IRENA
CEO, Ocean Energy Europe

TUESDAY, 12 MAY 2020 • 10:00AM - 10:30AM CET

#IRENA insights WEBINAR SERIES

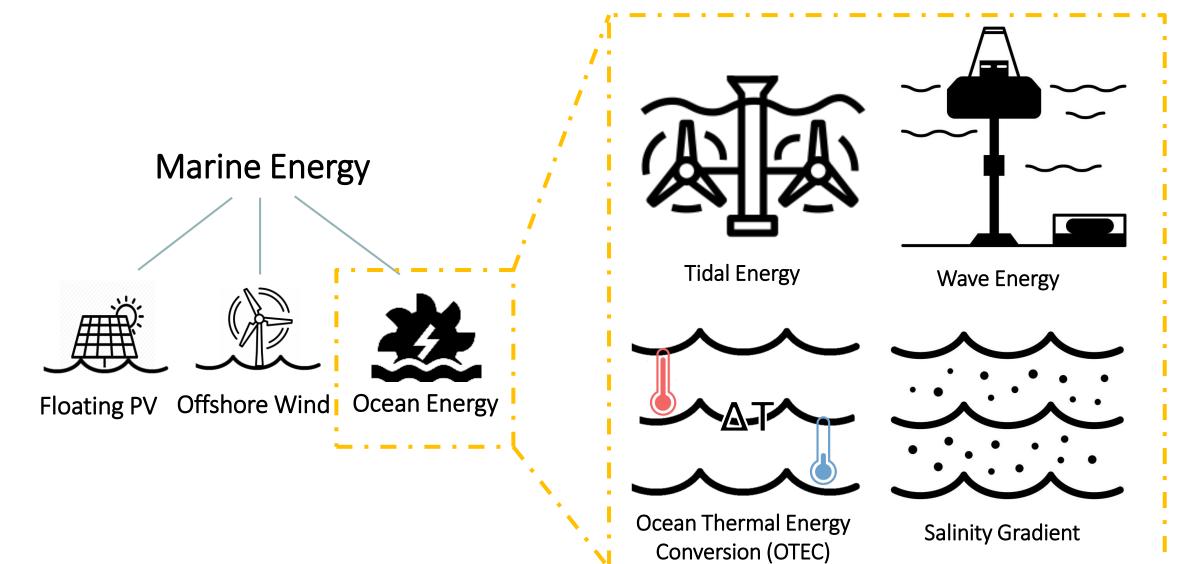
TechTips

• Share it with others or listen to it again

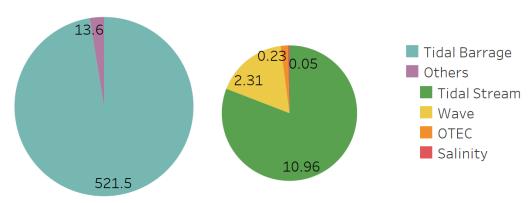
Webinars are recorded and will be available together with the presentation slides on #IRENAinsights website https://irena.org/renewables/Knowledge-

#IRENA insights WEBINAR SERIES

TechTips

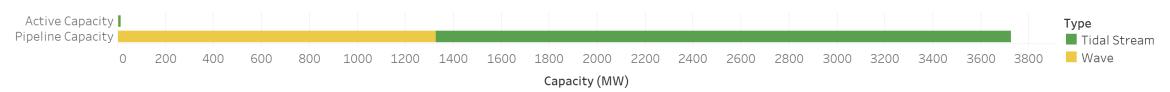

- Ask the Question
 - Select "Question" feature on the webinar panel and type in your question
- Technical difficulties
 - Contact the GoToWebinar Help Desk: 888.259.3826 or select your country at https://support.goto.com/webinar

Ocean Energy



Current Deployment and Outlook

Current Deployment (MW):

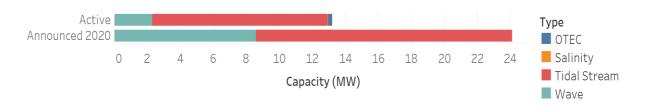


Total: 535.1 MW Total: 13.55 MW

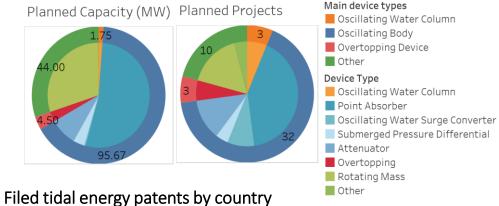
Ocean Energy Forecast (GW)

IRENA REmap forecast 10 GW of installed capacity by 2030

Ocean Energy Pipeline Capacity (MW)

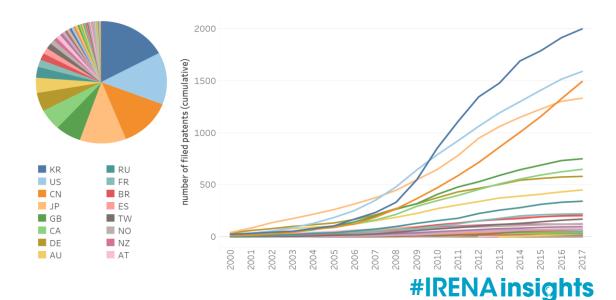


IRENA Analysis for Upcoming Report



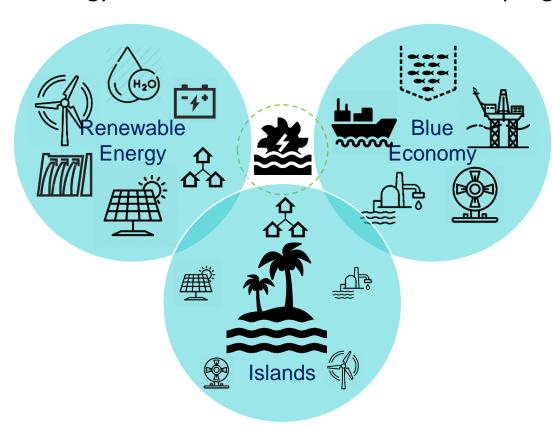
Mapping deployed and planned projects, visualizing by technology, country, capacity, etc. Examples:

Announced ocean energy additions by technology in 2020



Announced wave energy capacity and projects by device type Planned Capacity (MW) Planned Projects Main device types

Countries in ocean energy market (deployed and / or pipeline projects)


Innovative Business Models

Coupling with other Renewable Energy Sources

Create hybrid energy systems with other offshore energy sources to complement each other, create hybrid energy sources and/or benefit from synergies

Coupling with other Offshore Sectors

Positions ocean energy as a source to power other sectors

Apply both on Islands

Benefit from the ideal preconditions on islands as market entry

Innovative Business Models: System Coupling

Coupling Renewable Energy Technologies

	Solar	Wind	Floating Wind	Pumped Hydro	Storage	Microgrid	Hydrogen	Examples Country Status		Status
Tidal							(H ₂ O)	Surf'n'Turf Orkney	Scotland	In operation
Tidal	,,,,				• ≠ -			Bluemull Sound Shetland	Scotland	In operation
Tidal					• / -			San Antonio	Philippines	R&D
Tidal					• <i>f</i> -	40		PHARES Ushant Island France Planning		Planning
Tidal		-						KIOST South Korea R&D		R&D
Tidal					• 4 -	0,0		KIOST South Korea R&D		R&D
Tidal	.بلاد				. / -	40		Dent Island	Canada	Test Completed
Wave					. 	Δ <u>.</u> Δ		King Island	Australia	Planning
Wave		Ů			.4-	Δ <u>.</u> Δ		Garden Island	Australia	Planning
Wave						40		KIOST	South Korea	R&D
Wave								Canary Islands	Spain	R&D
Salinity			ŭ				(H ₂ O)	REDstack	Netherlands	Planning

Innovative Business Models: System Coupling

Example: PHARES (Progressive Hybrid Architecture for Renewable Energy Solutions in Insular Systems)

Renewable energy provider AUKO Energy and tidal developer Sabella (horizontal axis turbines) have joined forces to develop a multienergy project to replace the high carbon energy carriers (now 100%) and substitute it by a hybrid renewable power scheme. It will showcase the integration of variable resources with OE in an island setting on Ushant Island in the French Channel Islands, where ideal topographic and bathymetric preconditions for tidal energy are available.

Key Features:

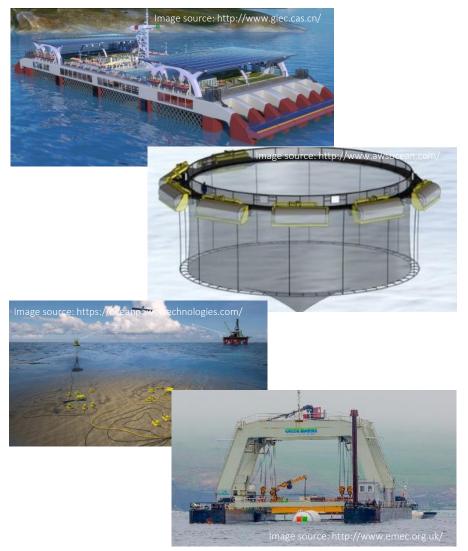
1 MW tidal power (2 x 500 kW Sabella D12)

 $0.9 \text{ MW wind power} (1 \times 0.9 \text{ MW})$

0.5 MW solar PV power

energy storage system (EDF SEI)

minigrid



Innovative Business Models: Blue Economy

	Power	Desalination	Cooling (SWAC)	Oil and Gas	Aquaculture	Shipping/Port	AUV charging	Developer
Wave	C							SINN Power; AWS Ocean Energy; WavEC; Albatern; Aqua Power Technologies; GIEC; Japanese Consortium
Tidal	(h)							Sustainable Marine Energy
Wave	Q							Ocean Harvesting
Wave	(1)							Wave for Energy; Hann Ocean; Floating Power Plant
Wave	(ф	OPT Ocean Power Technologies;
Wave	Ch	Ţ,						Resolute Marine; GIEC; Carnegie Clean Energy; Wavepiston
Wave		क्ष						ATMOCEAN; NREL
Tidal	(L)					- COCCOO		EMEC (through hydrogen)
OTEC	(T)	Ţ.				30030		Bardot Ocean; Bluerise
OTEC	(A)	Ţ.						NIOT
OTEC	(MAKAI
Other						*****		GEPS

Key Messages

Technology and Market

- Convergence in technology
- Taking up speed: 25 MW new ocean energy deployments in 2020, pipeline capacity almost 4 GW

Commercialisation

- More attention on the enhancement of the business case
- Unlock the synergies between the blue economy and Ocean Energies for islands

Support and Policies

- Resource assessment and planning is crucial
- Policy and revenue support are needed
- International cooperation continues to be critical. IRENA is strengthening the work in ocean energy. Reach out to IRENA!

Questions & Answers

Next webinars

☐ TUESDAY, 26 May 2020 • 16:00 – 16:30 CET

"IRENA FlexTool – Assessing power system flexibility to integrate a higher share of renewables"

To register: https://attendee.gotowebinar.com/register/1826688342982761996

☐ TUESDAY, 9 June 2020 • 15:00 – 15:30 CET

"Renewable Power Generation Costs in 2019: Latest Trends and Drivers"

To register: https://attendee.gotowebinar.com/register/7615640153279534350

#IRENA insights WEBINAR SERIES

- www.irena.org
- www.twitter.com/irena
- www.facebook.com/irena.org
- www.instagram.com/irenaimages
- www.flickr.com/photos/irenaimages
- www.youtube.com/user/irenaorg

Thank you very much for your attention!

innovationday@irena.org

Back Up