

Grid codes for renewable powered systems

Presenters:

- Arina Anisie, Analyst Renewable Innovation, IRENA
- Gayathri Nair, Associate Programme Officer RE Grid Integration, IRENA

TUESDAY, 6 September 2022 • 14:00-14:30 CEST

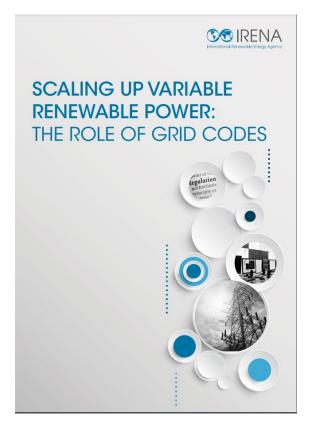
IRENA insights WEBINAR SERIES

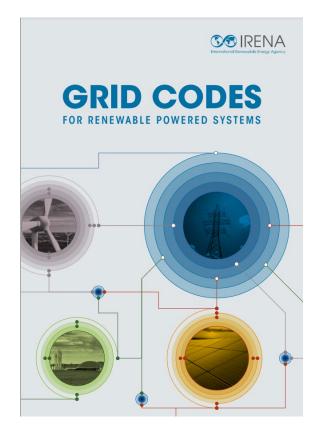
SPEAKERS

Arina Anisie
Renewable Energy
Innovation, IRENA

Gayathri Nair
Associate Programme
Officer RE Grid
Integration, IRENA

IRENA insights WEBINAR SERIES





IRENA Grid Codes Reports

2016 2022

Key contents

- 1. Grid code development
- 2. Technical requirements and their evolution
- 3. Ancillary services
- 4. Regional grid codes
- 5. Grid code compliance
- 6. Guidance for designing grid codes

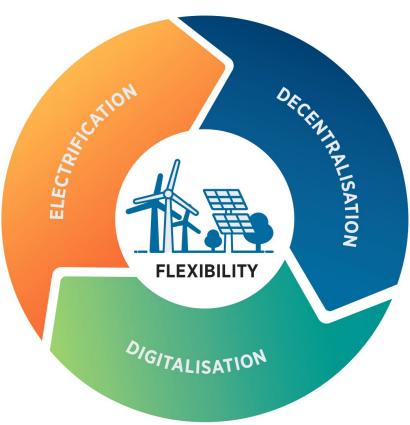
Grid Connection Codes

	MARKET CODES	OPERATION CODES	CONNECTION CODES
FUNCTIONALITY	Electricity BalancingCapacity AllocationCongestion Management	System OperationElectricity Emergency and Restoration	Requirements for GeneratorsLoads ConnectionHVDC Connection
MAIN ACTORS	 Transmission System Operators Market Operator 	 Transmission System Operators Energy Suppliers 	 Transmission System Operators Distribution System Operators Investors Project Developers Technology Providers Energy Suppliers Consumers

5 Key Messages

- Grid codes should be technology-neutral and should evolve to meet system needs
- 2. Grid codes should enable innovations to connect safely to the grid
- 3. Grid connection code requirements need to be tailored to country/system context
- 4. Regional grid connection codes is key to facilitate international power trade and ensure competitiveness
- 5. An imperfect grid code is, in many cases, better than no grid code at all

1

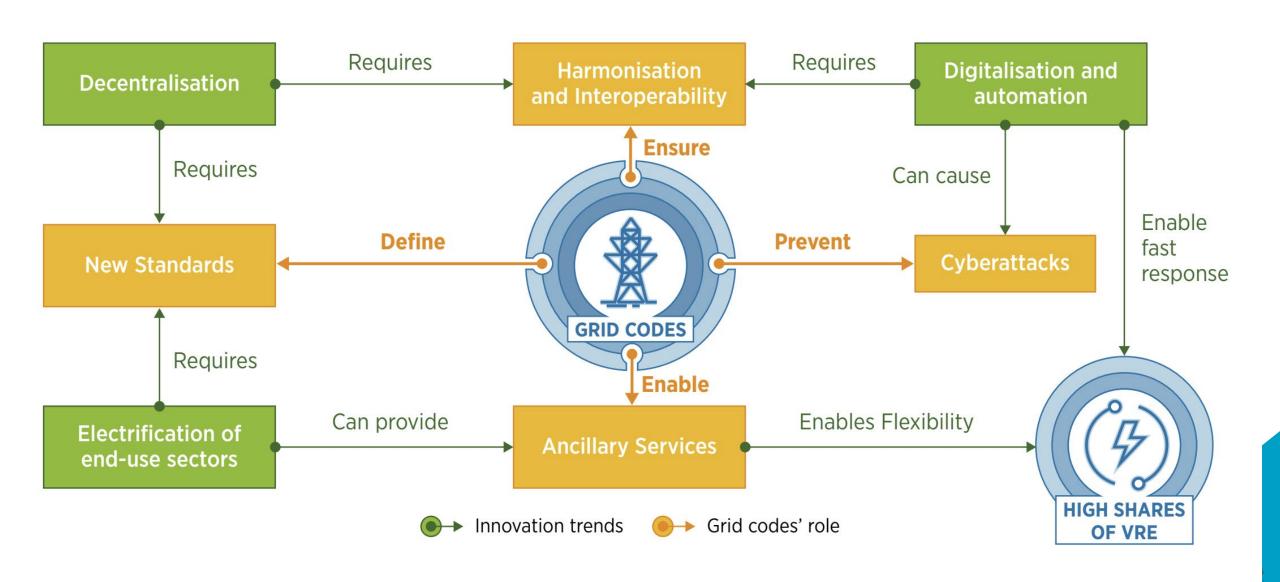

Grid codes should be technologyneutral and should evolve to meet system needs

Power sector innovations trends

 Electrification of end-use sectors is an emerging solution to maintain value and avoid curtailment of VRE, and help decarbonize other sectors

 Digital technologies enable faster response, better management of assets by connecting devices, collecting data, monitor and control The increasing deployment of Distributed Energy Resources (DERs) turns the consumer into an active participant, fostering demand-side management.

Power system transformation



ONGOING TRANSFORMATIONS IN THE POWER SYSTEM

Previous state	New state
Regulated fuel influx ••••••••••••••••••••••••••••••••••••	· · ▶ Variable Renewable Energy
Synchronous machines ••••••••••••••••••••••••••••••••••••	··→ Inverter-based resources
Large-scale power plants ••••••••••••••••••••••••••••••••••••	Distributed generation
Flexible generation ••••••••••••••••••••••••••••••••••••	•• Flexible generation, demand and storage
Process automation • • • • • • • • • • • • • • • • • • •	•• • Autonomous operation / Digital Smart Grid
Electric light and power ••••••••••••••••••••••••••••••••••••	Electric light, power, heating and mobility
Consumers • · · · · · · · · · · · · · · · · · ·	••• Prosumers

Grid codes in a transforming power system

Grid codes should enable innovations to connect safety to the grid

System needs are the main drivers for grid code development

Existing requirements

- Voltage and frequency operating ranges
- Frequency control capability requirements
- Requirements for generators to provide reactive power for voltage control
- Fault behavior requirements/LVRT
- **Protection** of customer facilities
- Controllability of active and reactive power output
- Active power controllability requirements
- Power quality requirements
- RE forecasting requirements

Grid codes should enable innovations to connect safely to the grid

DISTRIBUTED GENERATION

Generation from plants connected at low and medium voltage, such as solar rooftops, micro wind turbines, etc.

SMART CHARGING ELECTRIC VEHICLES

Optimising the charging cycle of the EVs according to distribution grid constraints and local renewable energy availability, as well as driver preferences.

BEHIND-THE-METER BATTERY

at the consumer end and store

surplus generation.

Small batteries that are connected

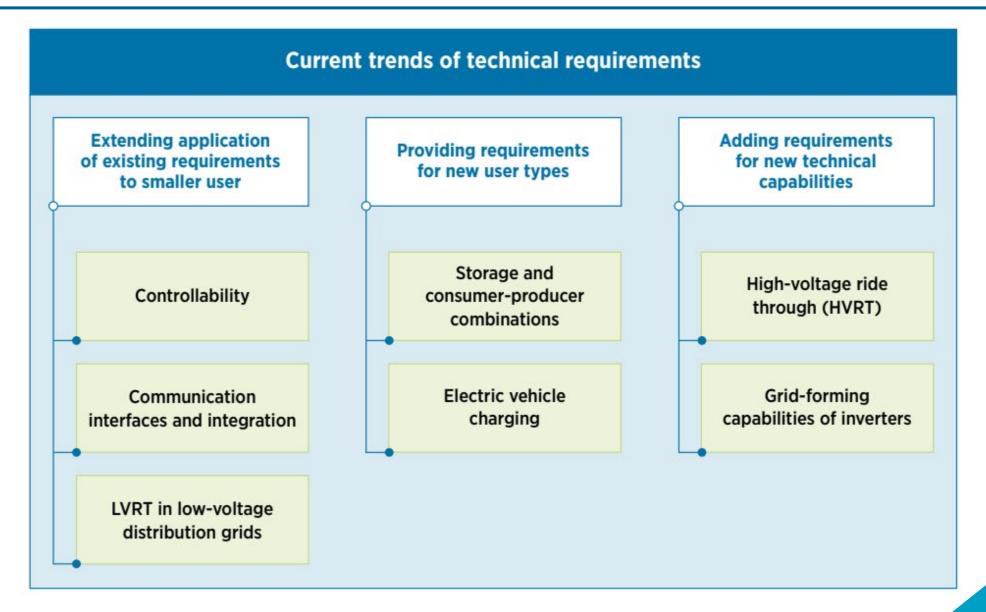
electrical energy during periods of

Smart homes

The new consumer is also producing, storing, trading energy and managing own load

DEMAND RESPONSE

Process that enebles consumers to alter their electricity consumption patterns and provide grid services, individually or through an aggregator.


POWER-TO-HEAT

Thermal boilers, heat pumps, thermal storage, etc. used to provide heat for residential purposes.

Evolving trends in grid connection codes

DER Controllability, LVRT, HVRT and Cybersecurity-Examples

Controllability requirements are increasingly being extended towards applying to rooftop solar PV and other small DER: **Grid codes specify** power reduction capabilities; Minimum power restoration ramps for VRE generation; Upper limits for power injection and minimum power output from VRE under certain conditions (less common)

Example: In Germany for connection to the low voltage grid, new PV facilities with less than 30 kW capacity that cannot be controlled remotely have to limit their output to 70% of rated power. Remote control of active power output at the request of the system operator is required for all DER rated above 100 kW connected to the grid.

Low Voltage ride through (LVRT): for DER connected at low voltage grids; at low voltage there is generally no corresponding requirement to support the voltage by injecting reactive or active current during LVRT events

In Japan, for residential applications of PV, which lowered the threshold of residual low voltage in 2016 from 0.30 per unit to 0.20 per unit for 1 second. In addition, the PV system should recover more than 80% of the power output in 0.2 seconds.

High Voltage ride through (HVRT): keep the VRE functioning during overvoltage and help keep the grid stable Example: Australia, China and Spain have the most stringent regulations requiring a wind power plant and PV system to withstand a voltage swell of 130% of rated grid voltage.

Communication Interfaces and Integration: Harmonized communication interfaces and control systems; Bidirectional communication; Internet-based communication-Cybersecurity issues;

Example: In Germany, any new DER installation above 7 kW is required to communicate through a smart meter gateway (SMGW), which provides a secure data communication channel to the system operator for energy management.

Grid codes for storage and EV charging-Examples

- Belgium and Great Britain treats storage as a generation asset for some requirements, which cover frequency, robustness and low voltage ride through (LVRT), voltage stability, and reactive power capacity.
- Finland established its own specifications for storage-The requirements are specific for storage connected through power electronics and include controllability, operating frequency and voltage ranges, RoCoF, FRT, fault behavior, protection, recovery after voltage disturbances, active power control, reactive power capacity, voltage control and reactive power control, commissioning testing, modelling requirements, and the compliance process. They also mention that large storage systems should agree bilaterally with the TSO on the capabilities for black start and anti-islanding.

Grid-following inverters

Inverter control system measures and synchronises to the grid voltage waveform, adjunting power output to "follow" voltage.

Grid-forming inverters

Inverter control system sets an internal voltage waveform reference and adjusts power output to help maintain this voltage.

Example: Great Britain's National Grid ESO undertook a first step in this direction by publishing first drafts of a grid code specification for grid-forming inverters in 2020. When integrated into the grid code, this will be a non-mandatory specification that outlines technical requirements for potentially installed grid-forming inverters but does not generally require the functionality itself.

3

Grid connection code requirements need to be tailored to country/system context

Grid codes must be based on system characteristics

Definition of grid user classes by:

Technology (synchronous machine/inverter based resource)

User type (generator/consumer/hybrid)

Plant size (rated power, connection voltage level)

Specification and parametrisation of connection requirements per user class

Protection

Power Quality

Simulation/model aspects

Controllability of active and reactive power output

Fault behaviour

Voltage and Frequency operating ranges

Reactive power and voltage control capability

System restoration issues

Frequency control capability

Power system characteristics

Resources required to maintain system stability and security

Capacity, location, flexiblity, capabilities of existing resources

Capacity and resource availability from interconnections to other power systems

Current and expected/planned situation

Grid code formulation varies according to grid size and **VRE** integration level

- Storage facility integration
- Full frequency and voltage control capabilities
- Grid-forming and black-start services from storage
- · Grid-forming inverters for stability issues in regions without hydropower
- Frequency control and active power control performance suitable for AGC integration required
- Grid-forming services and black-start functionality to be provided by new assets connected to high-voltage levels (e.g. VRE power plants or large-scale storage)

up

- LFSM-U and active power control performance suitable for AGC integration
- Requirements for enabling technologies (e.g. storage)
- FRT capability and active power control requirement extends to new low-voltage connections
- Requirements for enabling technologies (e.g. storage)
- FRT capability and active power controllability required for low-voltage connections
- New requirements for larger facilities
- Requirements for enabling technologies (e.g. storage)

- Assets must withstand wider frequency and voltage range
- Need for controllability and FRT capabilities (including small DER)
- Requirements must align with the state of the art, standards and rules of the VRE industry
- Power quality, protection, suitable frequency operating ranges, and LFSM-O must apply to all newly connected VRE facilities and enabling technologies
- For medium-voltage connections, requirements for power remote control and FRT are needed, but are not yet crucial for low voltage connections

Small System

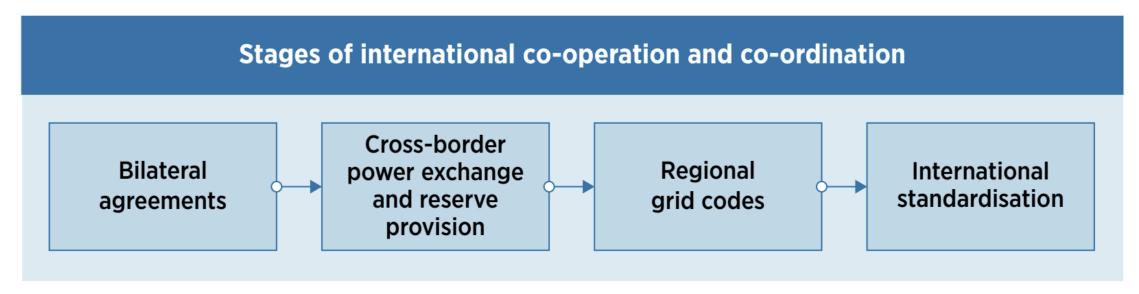
Medium System

Large System

System Size

Grid codes refer to IEC and IEEE product specification standards

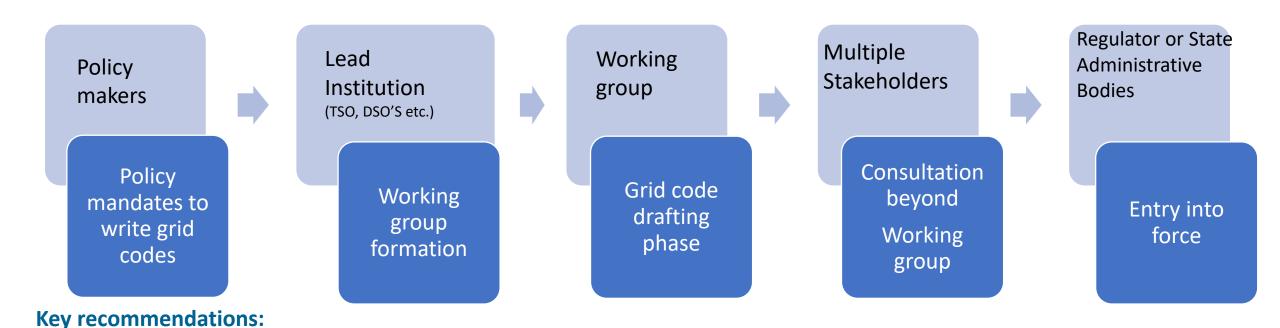
Standard	Content	Standard	Content
IEC 60034	Rotating electrical machinery	IEC 61215	Terrestrial PV systems
IEC 60044	Instrument transformers	IEC 61400	Wind turbine design
IEC 60045	Steam turbines	IEC 61730	Construction of PV systems
IEC 60076	Power transformers	IEC 61868	Insulating mineral oils
IEC 60143	Series capacitors for power systems	IEC 61869	Instrument transformers
IEC 60044	Voltage and current transformers	IEC 62052	Electricity metering equipment
IEC 60308	Hydraulic turbines	IEC 62548	Solar PV arrays
IEC 60358	Coupling capacitors	IEC 62934	Grid integration of renewable energy generation
IEC 62052	Electricity metering equipment	IEEE 112	Induction motors
IEC 62053	Static meters for AC active energy	IEEE 115	Synchronous machines
IEC 60076	Power transformers	IEEE 421	Synchronous machines
IEC TS 61836	Solar PV energy systems	IEEE 929	Solar PVs


4

Regional grid connection codes is key to facilitate international power trade and ensure competitiveness

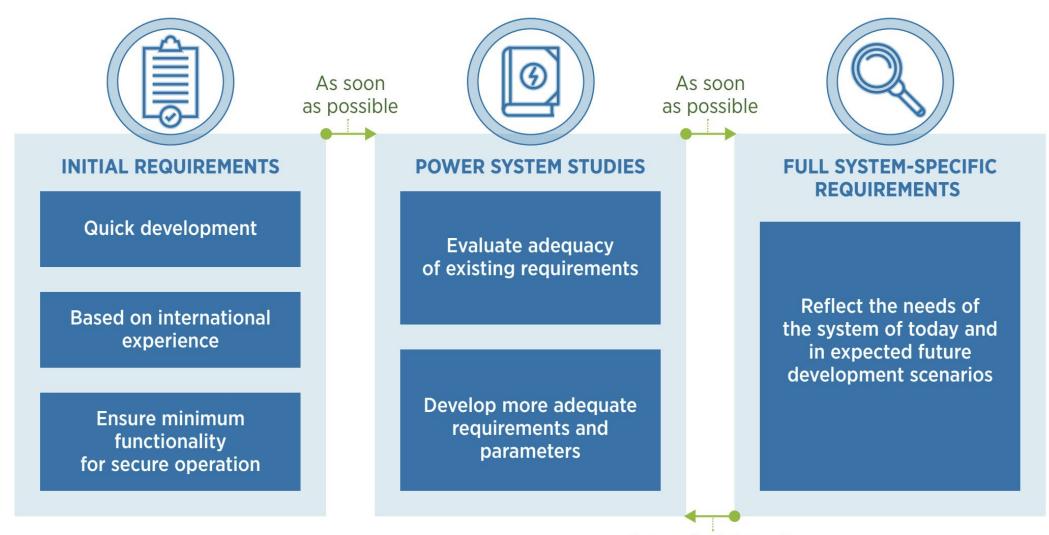
Regional grid codes facilitate sharing flexibility between countries

- Regional grid connection codes ensure competitiveness in regional markets between assets connected to one grid that have the potential to sell their energy and services in neighboring markets.
- EU regional grid code requirements are minimum and non-exhaustive, which means that each TSO could specify additional and/or stricter requirements.
- Regional connection network codes often focus heavily on ensuring operational security but focus somewhat less on actual harmonisation of technical requirements.


5

An imperfect grid code is, in many cases, better than no grid code at all

Grid code development


• Install a working group with a diverse set of stakeholder representatives from the very beginning. No individual stakeholder has in-depth knowledge of all relevant technical details. Involving all relevant actors early on shortens the feedback loops and leads to a higher-quality draft.

Grid codes have important role in building trust between different actors

Overall co-ordination between various working groups for different grid codes and some reasonable membership
overlap between the working groups are advisable to ensure that the systemic perspective is adequate.

Grid code parameter development and revision process

IRENA insights WEBINAR SERIES

SPEAKERS

Arina Anisie
Renewable Energy
Innovation, IRENA

Q & A

Gayathri Nair
Associate Programme
Officer RE Grid
Integration, IRENA

THANK YOU FOR JOINING US!

SEE YOU IN OUR NEXT WEBINARS www.irena.org/events/2020/Jun/IRENA-Insights

