

Renewable Methanol: An Enabler for Carbon Neutrality in the Chemical & Liquid Fuel Sectors

WEDNESDAY, 9 JUNE 2021 • 14:00-14:30 CEST

SPEAKERS

Paul Durrant
End-use sectors and
bioenergy
IRENA

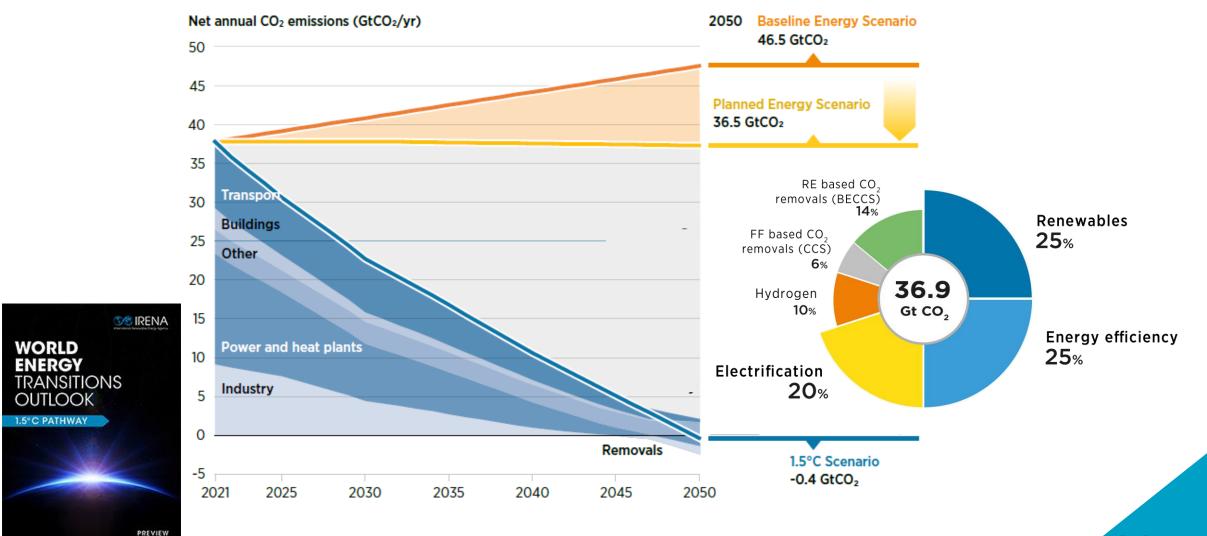
Seungwoo Kang
End-use sectors and
bioenergy
IRENA

The **slides** and a recording at https://irena.org/events/2020/Jun/IRENA-Insights & in the handouts section

You are all currently muted and will remain so throughout the webinar

If you have **Questions** to the speaker please use the **Q&A**

Tell us how we did in the **survey** to help us improve



If you encounter any technical issues, please connect via **phone** or contact the **Help Desk**: 888.259.3826 or https://support.goto.com/webinar

Net-zero goal – requires a daunting pace of change

IRENA's 1.5°C Scenario: Transition to net-zero emissions by mid-century

90% of all decarbonisation in 2050 will involve renewable energy through direct supply of low-cost power, efficiency, electrification, bioenergy with CCS and green hydrogen.

IRENA analysis of leading scenario studies shows robustness of renewables-based solutions:

https://energypost.eu/18-energy-transition-scenarios-to-watch-where-they-agree-and-disagree/

In a 1.5°C pathway

Hydrogen

demand needs to grow from

120 Mt to 613 Mt in 2050

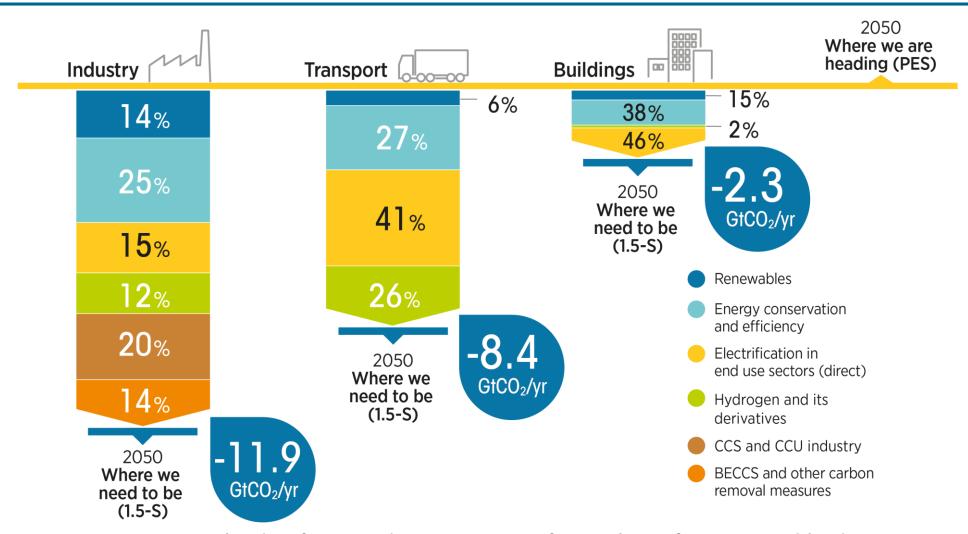
Requires: 160 GW electrolysers added every year till 2050; installed capacity in 2020 was 0.3 GW.

Hydrogen and its derivatives will account for 12% of final energy use by 2050.

Biomass

supply needs to sustainably grow from

54 EJ to 153 EJ in 2050


Requires: a tripling of supply and careful management & control to ensure sustainability.

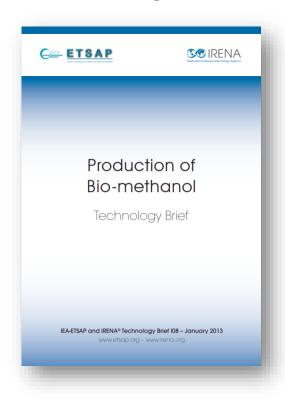
Biomass and its derivatives will account for 18% of final energy use by 2050

Electrification and green hydrogen offer CO₂ reduction solutions for end-use

• In transport, two-thirds of CO₂ reductions come from electrification and hydrogen. In industry, hydrogen and electricity combined contribute to over one-quarter of emission reductions. Direct-use of renewables and energy efficiency remain important in all sectors.

IRENA's Analysis & Networking – Renewable Fuels & Feedstocks

Networks

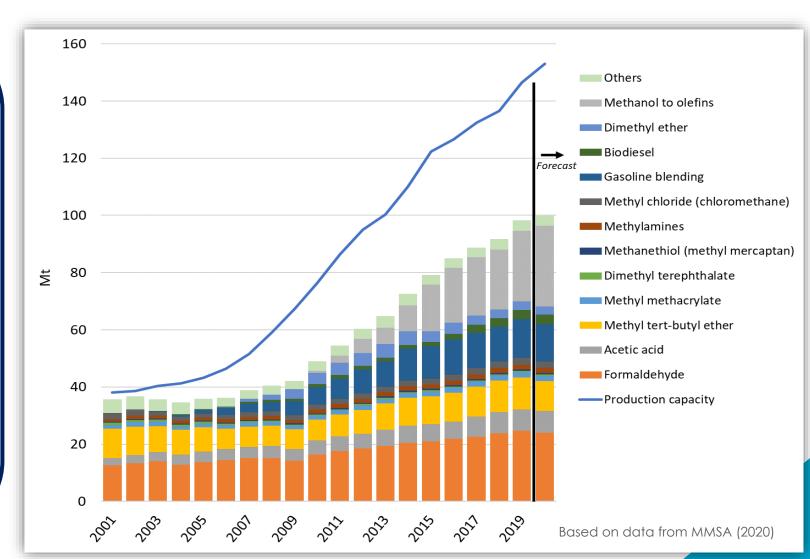

- Collaborative Framework on Green Hydrogen
- Green hydrogen trade arrangements, standards and certification.
- Collaborations with associations including Methanol Institute & Ammonia Energy Association
- Collaboration with other global institutions: World Economic Forum – enabling frameworks for green hydrogen; UNIDO on industrial decarbonization; Mission Innovation on Bioenergy & Industry.

Innovation outlook: Renewable methanol

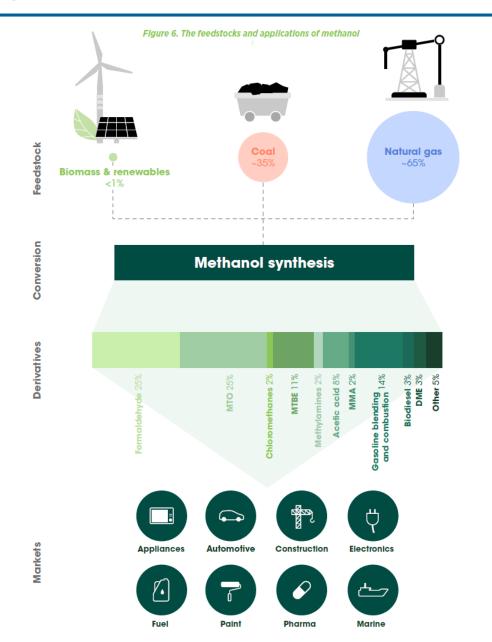
2013: Bio-methanol technology brief

2021: Renewable Methanol Innovation Outlook

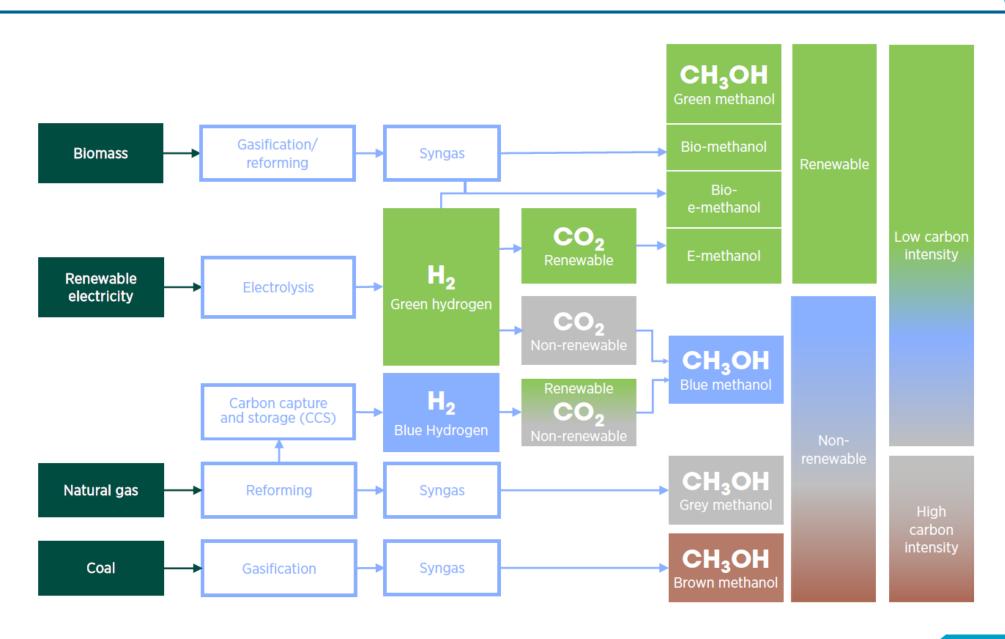
- Methanol is a key building block in the chemical sector
- IRENA assessed the potential of bio-methanol in 2013
- Significant developments since then
- In 2020 IRENA and Methanol Institute partnered to provide the energy community with the latest information and outlook for renewable-methanol



Rapid growth in global methanol market

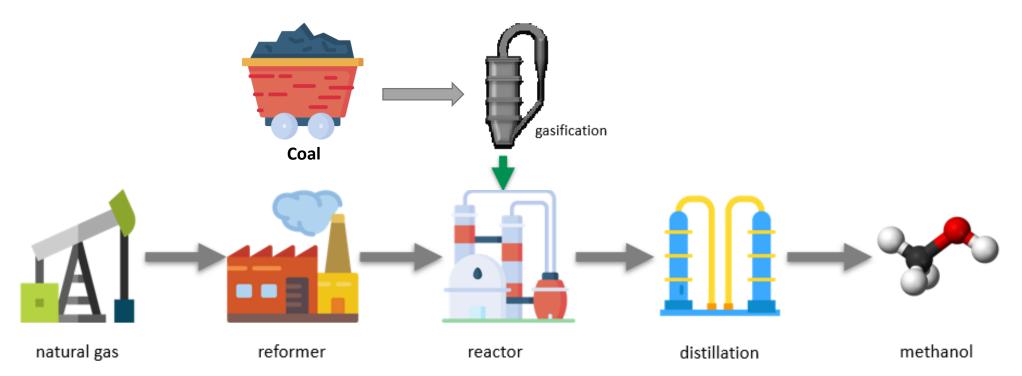

- In the last 10 years methanol production capacity and use has more than double, from 40Mt in 2009 to 100Mt in 2019
- Around 2/3 is used in the production of chemical products and 1/3 in the production of fuels
- Recent applications, such as Methanol-to-Olefins (MtO) for plastic products are growing even faster

Applications for methanol



- Potential applications
 - Chemical building blocks
 - Shipping
 - Fuel cells for road vehicles
- However, today close to 100% of methanol production comes from fossil fuels –natural gas and coal-
- Renewable options
 - Biomass based route: Biomethanol
 - (now getting traction)
 Green hydrogen based route: E-methanol

Methanol conversion pathways



Methanol from fossil fuels

- Close to 100% of methanol is being produced from fossil fuels: 65% from natural gas, 35 % from coal
- Production from natural gas is the norm in the rest of the world
- Most methanol production capacity using coal is located in China

Methanol from biomethane

IRENA insights
WEBINAR SERIES

- Biomethane can be blended or co-feed with natural gas to produce methanol
- About 540 units produce biomethane out of 18 000 biogas units in EU (2019)
- Very little or no technical change need

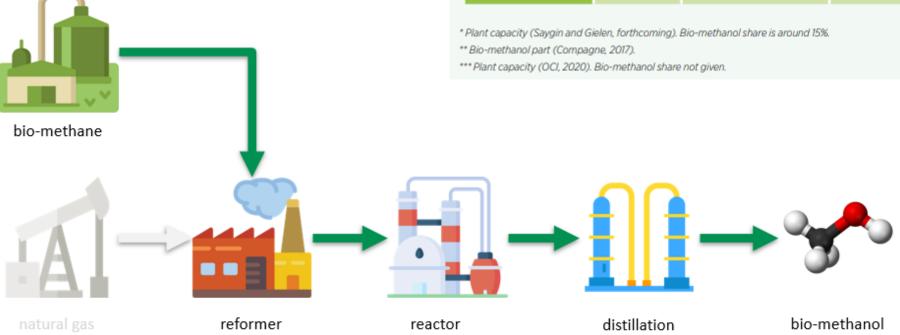
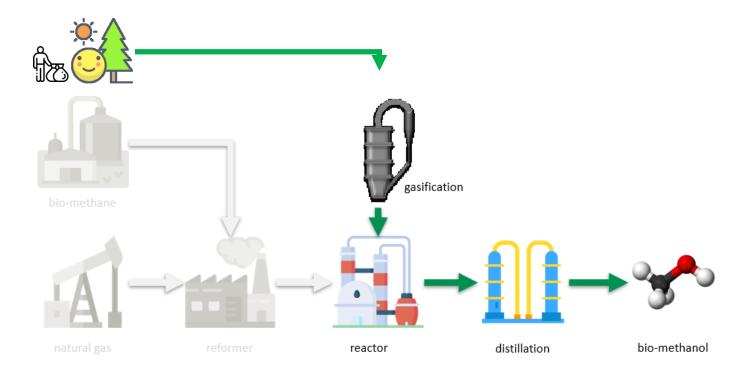


Table 5. Methanol plants co-fed with a mix of natural gas and biomethane


Technology	Feedstock	Project, reference	Project phase	Product	Plant capacity
Steam reforming	Natural gas/ biomethane	BASF, Ludwigshafen (DE)	Operational	Methanol	480 kt/y* (2018)
Steam reforming	Natural gas/ biomethane	OCI/BioMCN Groningen (NL)	Operational	Methanol	60 kt/y** (2017)
Steam reforming	Natural gas/ biomethane	OCI Beaumont Texas (US)	Operational	Methanol	1 075 kt/y (2020)***

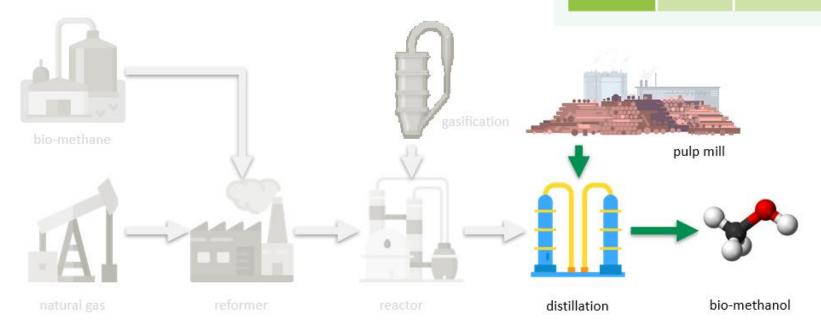
Methanol via biomass/MSW gasification

IRENA insights
WEBINAR SERIES

- Gasification route enables a wide variety of biomass feedstock
- Technology is similar to commercial gasification technology
- Feedstock preparation is a key step for biomass/MSW

Table 4. Gasification technologies and their application										
Gasification technology Name/owner	Heating principle	Type	Feedstock	Project, reference	Project phase	Product	Plant capacity (unit varies) kt/year			
SES Gasification Technology (U-Gas)	DO ₂	ВВ	Biomass/ MSW	Trans World Energy, Florida (US) (Trans World Energy, 2020)	FEED done, start-up Q2 2023	Methanol	875 kt/y			
NextChem Technology	DO ₂	UO ₂	MSW	ENI Refinery, Livorno, Italian (IT) (NextChem, 2020b)	Basic engineering ready Q3 2020	Methanol	115 kt/y			
			MSW/ waste wood	LowLand Methanol (NL) (LowLands Methanol, 2020)	Start-up early 2023	Methanol	120 kt/y			
PDQ/ Thyssenkrupp	DO ₂	EF	Biomass (torrefied)	BioTfueL Demo Project (FR) (BioTfuel, 2020)	Operational	FT products (slipstream based)	15 MWt of biomass			
HTW/ Thyssenkrupp	DO ₂	ВВ	Biomass	Värmlands- metanol (SE) (Värmlandsmetanol, 2017)	Planning	Methanol	100 kt/y			
TRI	IH	ВВ	MSW	Fulcrum (US) (TRI, 2020)	Start-up Q4 2020	FT products	40 000 m ³ /y			
Bioliq/KIT	DO ₂	EF	Pyrolysis oil from straw	Bioliq Demo project (DE) (KIT, 2020)	Operational	Gasoline via DME	5 MW, of biomass			
Chemrec	DO ₂	EF	Black liquor	BioDME demo plant (SE) (Chemrec, 2020)	Idling	DME (via methanol)	4 t/d			
Enerkem (Enerkem, 2020a)	DO ₂	ВВ	MSW	Edmonton (CA)	Operational	Ethanol (via methanol)	30 kt/y			
	DO ₂	ВВ	MSW	Quebec (CA)	Announced construction	Ethanol (via methanol)	35 kt/y			
	DO ₂	ВВ	MSW	Rotterdam (NL)	Engineering	Methanol	215 kt/y			
	DO ₂	ВВ	MSW	Saragossa (SP)	Engineering	Methanol	215 kt/y			
Sungas and GTI (U-Gas)	DO ₂	ВВ	Biomass	GTI demo, Chicago (US) (SunGas Renewables, 2020)	Operational	Syngas	5 MW, of biomass			
TCG Global	IH	U-IH	Biomass	Red Rock Biofuels (Red Rock Biofuels, 2020)	Under Construction Start-up 2021	FT products	58 000 m ³ /y			

Notes: FEED = front-end engineering design; FT = Fischer Tropsch; kt/y = thousand tonnes per year; MWt = megawatt thermal; t/d = tonnes

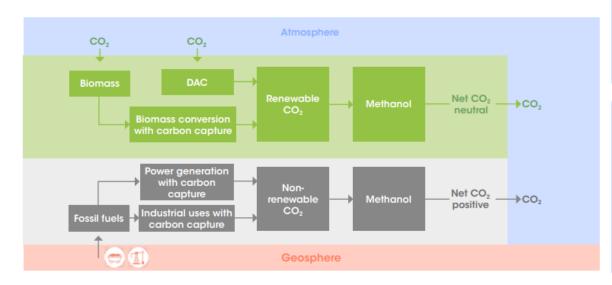

Methanol from pulping cycle

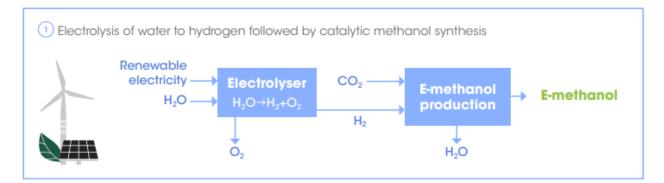
IRENA insights WEBINAR SERIES

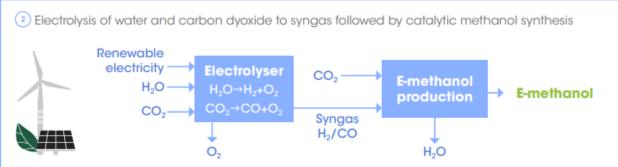
- Raw methanol is formed in the digester where wood chips react with the cooking chemicals
- Global estimate with pulp processing shows up to 1.2 Mt/yr of methanol

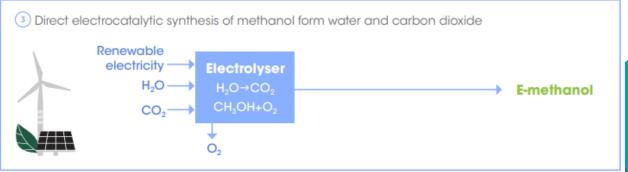
Technology Feedstock **Project Project phase Product** Plant capacity By-product Södra Mill, Bio-5.25 kt/y **Andritz** from wood Operational Mönsterås (SE) methanol pulping By-product Biofrom wood Alberta Pacific (CA) Operational Not known 3 kt/y methanol pulping

Table 6. By-product bio-methanol from wood pulping

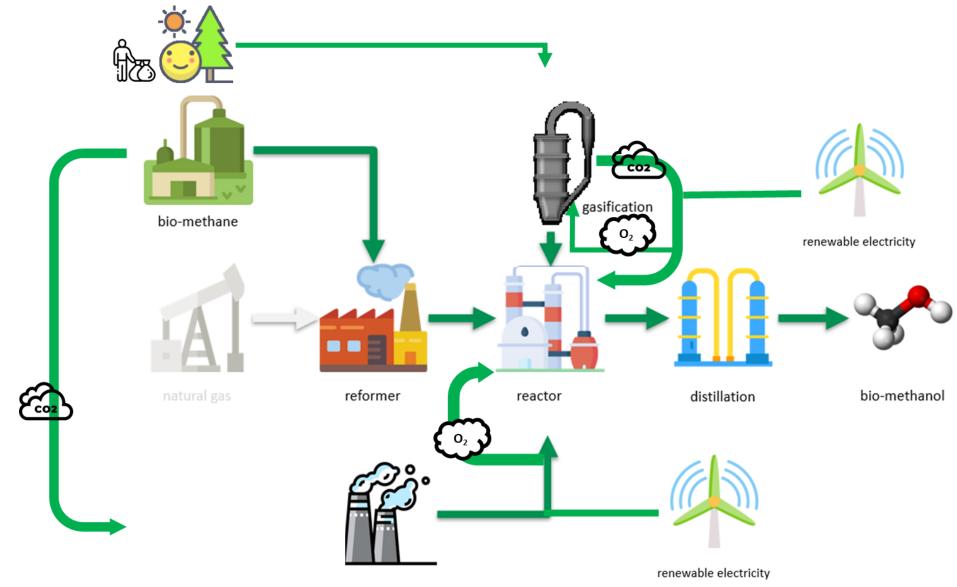




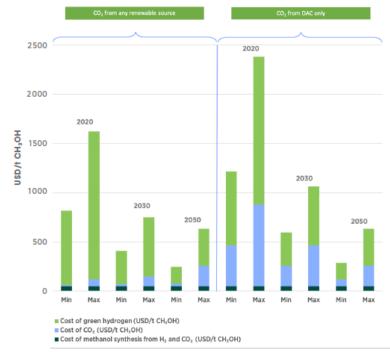

E-methanol - PtX


IRENA insights WEBINAR SERIES

- E-methanol is obtainable from CO₂ and green hydrogen through a catalytic process
- CO₂ feedstock for e-methanol
 - Industrial sources
 - DAC or BECCS/U




Combined bio and e-methanol



Renewable methanol cost competitiveness

Facilitating the transition to renewable methanol

- Ensure systematic investment throughout the value chain, including technology development, infrastructure and deployment
- Create a level playing field through public polity to facilitate sector-coupling
- Support market forces in the chemical sector, focusing on carbon intensity in consumer products
- Acknowledge how renewable methanol can contribute to carbon neutrality in "green deals,"
 COVID-19 economic recovery packages, and hydrogen strategies
- Translate the political will for carbon reduction into regulatory measures and support to facilitate long-term growth
- Encourage international co-operation on trade strategies to create jobs and foster competitive new industries for e-methanol in both producing and consuming regions
- Institute policy instruments to ensure equitable tax treatment and a long-term guaranteed price floor for renewable methanol and other promising fuels

Q & A 10 min

THANK YOU FOR JOINING US!

SEE YOU IN OUR NEXT WEBINARS www.irena.org/events/2020/Jun/IRENA-Insights

