

Reaching Zero with Renewables: Capturing Carbon

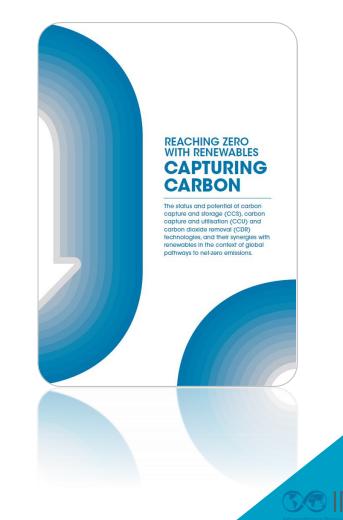
Presenter:

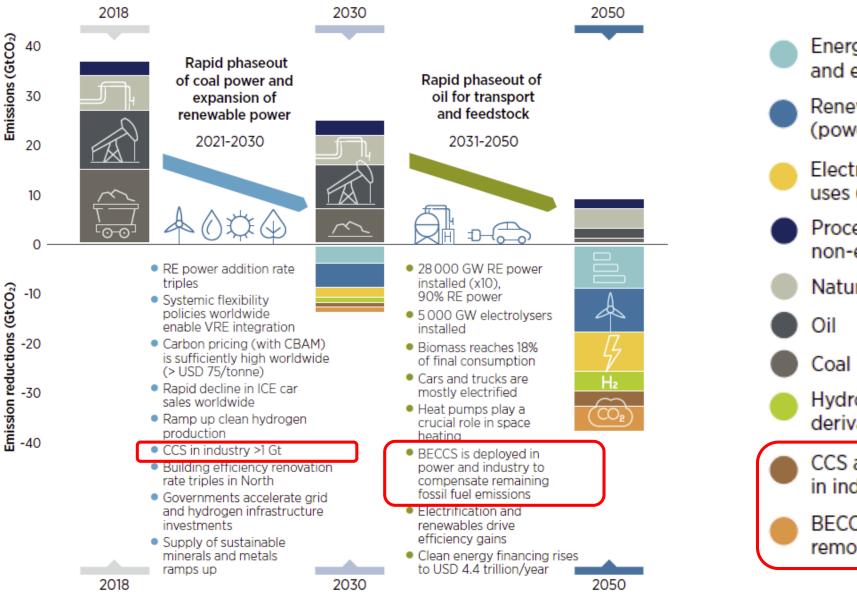
Martina Lyons, End-use sectors and Innovation, IRENA

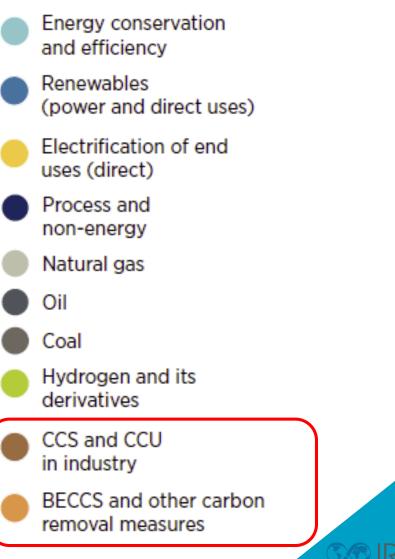
TUESDAY, 25 JANUARY 2022 • 14:00-14:30 CET

SPEAKER

Martina Lyons End use sectors and Innovation IRENA





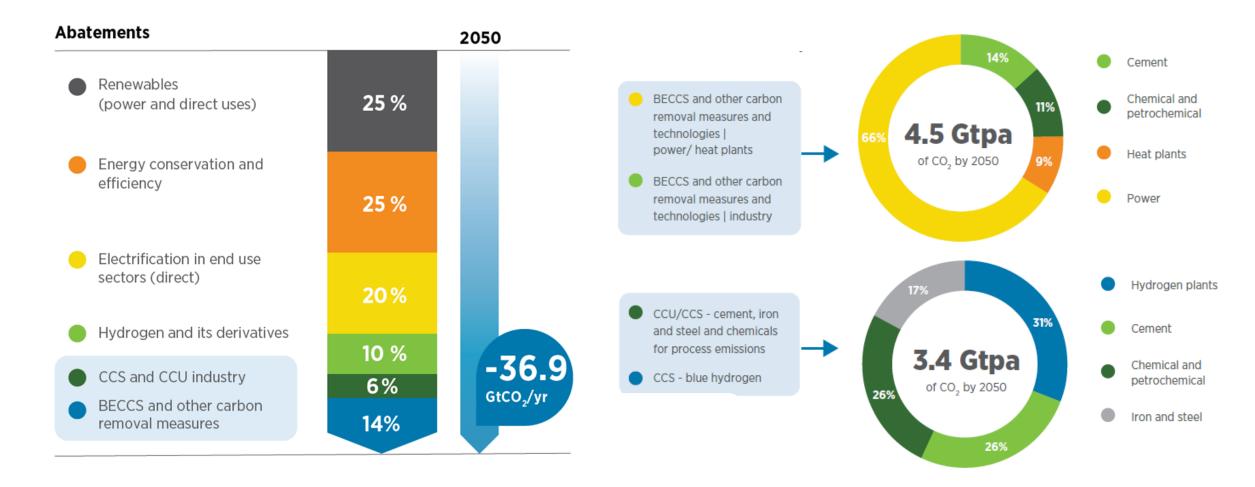

Reaching Zero with Renewables: Capturing Carbon

The status and potential of CCS, CCU and CDR technologies, and their synergies with renewables in the context of global pathways to net-zero emissions.

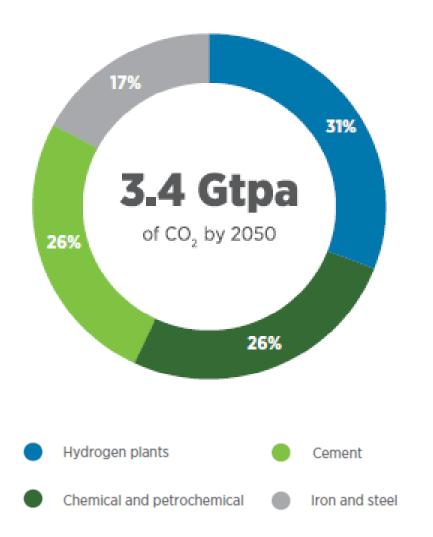
Holding the line at 1.5C means we need to act now

IRENA

insights

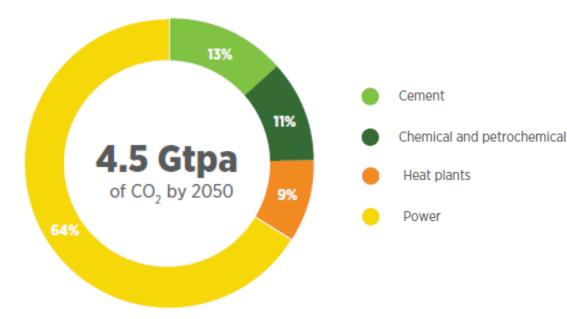

WEBINAR SERIES

Potential of CCS, CCU and CDR in 1.5C Scenario



20% abatement potential with CCS, CCU and CDR

CCS and CCU in hard to abate sectors


- CCS, CCU for fossil fuel and process emissions in industry aggressively scaled to reach 3.4 Gtpa by 2050 and
- Would require cumulative investment of around USD 0.9 trillion between 2021 and 2050
- CCS and CCU limited to the most essential applications, and excluded fossil-fuel based CCS for power production
- 2.3 Gtpa in 2050 for CCS applied in cement, chemical and iron and steel sectors
- 1.1 Gtpa in 2050 for the production of blue hydrogen from natural gas with CCS

A larger role for BECCS and BECCU

Process group	Biogenic carbon capture potential in 2050			
	GtCO ₂			
Power	4.43			
Heat	1.29			
Cement	0.37			
Iron and steel	0.03			
Chemicals	1.18			
Pulp and paper	0.35			
Food sector	0.30			
Blorefinery	2.15			
Total	10.12			

- BECCS currently unproved in most contexts
- Need for 40-50 EJ of biomass used with BECCS (~1/3 of total biomass used in the energy systems)
- BECCS utilized in a range of processes, optimum application requires more detailed investigation of costs, logistics and sustainable biomass supply chains
- IRENA 1.5C Scenario: biomass-based processes from which 10.12 Gtpa could be potentially captured and stored. Of that, the Scenario assumes 44% actually captured and stored
- Cumulative investment of around USD 1.1
 trillion between 2021 and 2050

DACCS/DACCU needs further development & validation

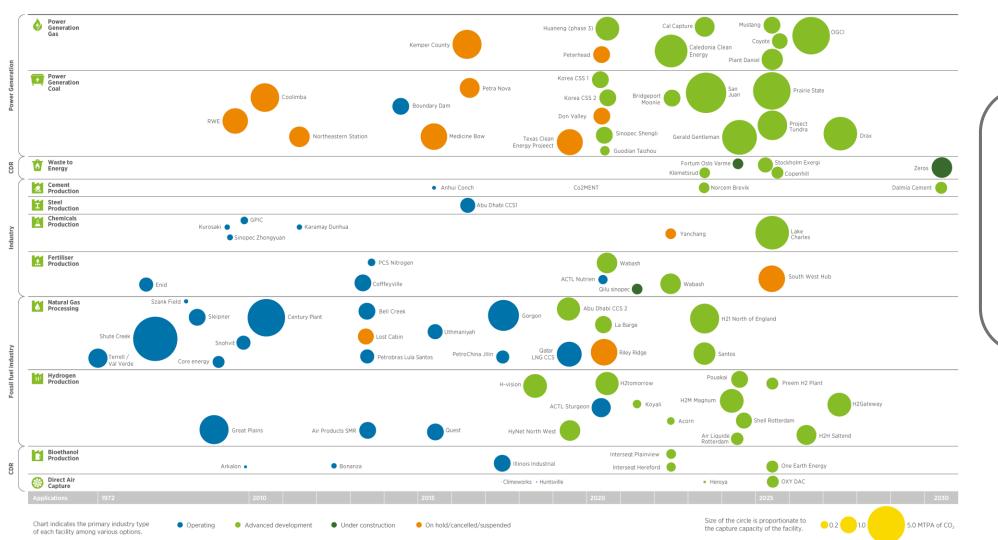
					Status		
Facility	Location	Capacity Mtpa/CO ₂	Early development	Under construction	Operating	Completed	NA
Climeworks CELBICON	IT	0				•	
Climeworks DAC-3	IT	0.00015				•	
Climeworks Hinwil	СН	0.0009			•		
Climeworks ORCA	IS	0.004			•		
CORAL	DE	0			•		
Herøya	NO	0.021	•				
Huntsville	USA	0.004			•		
Infinitree	USA	-					٠
Kopernikus Project P2X	DE	-				•	
Móstoles	ES	-	•				
OXY and Carbon Engineering	USA	1	٠				
Palm Spring Demo	USA	-	•				
Rapperswil	CA	-				•	
Skytree	NL	-					٠
Soletair	FI	-			٠		
Squamish demonstration	CA	0.000365			•		
SRI International, Menlo Park	USA	0			•		
Synhelion	СН	-			•		
Wallumbila - APA Renewable Methane Demonstration Project	AU	-		•			
Zenid	NL	-	•				

Laboratory

AU - Australia, CA - Canada, CH - Switzerland, DE - Germany, ES - Spain, FI - Finland, IT - Italy, IS - Iceland, NL - Netherlands, NO - Norway, USA - United States.

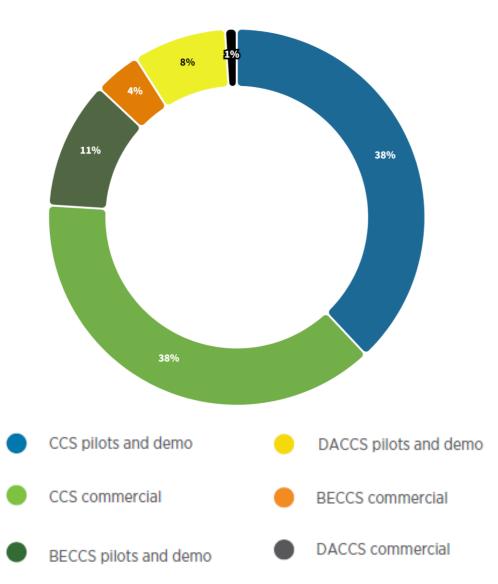
Source: Based on Geoengineering Monitor (2019, 2021); NASEM (2019); Viebahn, Scholz and Zelt (2019)

Pilot and demonstration


 DACCS/DACCU in early stages of development

- Current capture: **0.9 ktpa of CO2 capture**, other plant under development would add an additional 21 ktpa of CO2 capture
- Early experience: projects face high energy, water and land requirements, but offer flexibility in terms of their location
- Frequently quoted estimate at USD 600-800 t/CO2 avoided, newer studies lower costs USD 94-232/tCO2 avoided and needs to be demonstrated
- Large financial commitments to speed-up DACCS deployment - would allow offset some of the need for BECCS and capture historical emissions elsewhere

Progress in capturing CO2 is far too slow


Current capture ~ 0.04 Gtpa

• Equal **to 0.01%** of total global energy and process related emissions

Commercial and pilot/demo projects now

Current volume of capture 0.04 Gtpa

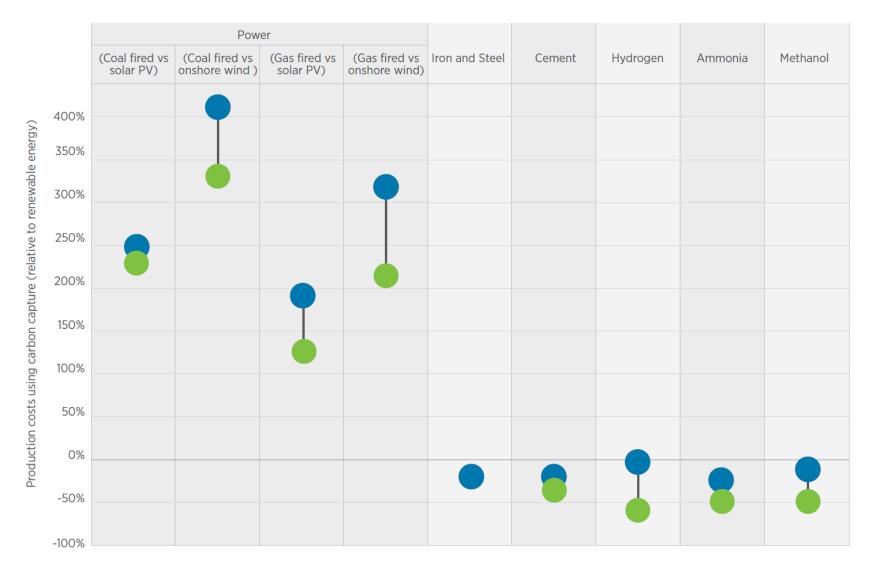
- Commercial plants: over 20 in operation, 30 at various stages of development
- Pilot and demonstration projects: almost 60 (closed, operating, in development)

BECCS/BECCU:

- Commercial: 3 in operation, 7 under development
- Pilot and demonstration projects: 20 in various stages of development

DACCS/DACCU:

- Commercial: 2 in operation, 1 in development
- Pilot and demonstration projects: 15 at various stages of development


With all **commercial plants** under development it may reach **0.1 Gtpa in 2030**

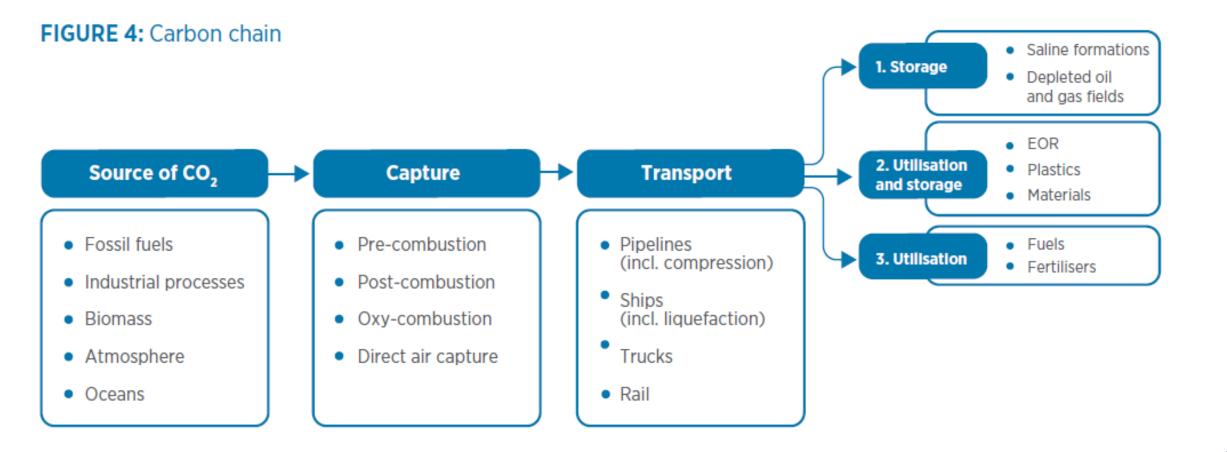
Renewables outcompete fossil fuel-based power plants with CCS

Lower value
 Higher value

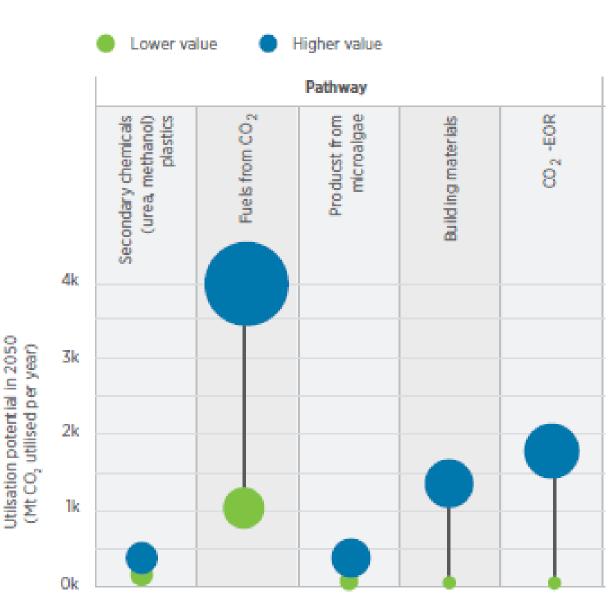
CO IRENA

Costs are uncertain and vary by application

Lower value
 Higher value



IRENA insights webinar series



Increasing role of carbon capture and utilisation

- Utilisation has a role in a net-zero pathway, but should be limited to applications that do not lead to later release of CO₂ back to the atmosphere
- Improves economic feasibility of CO₂ capture by creating a revenue stream and compensate for a lack of readily available and accessible CO₂ storage sites

• Applications:

- \mathbf{O}_2 to fuels (largest opportunity)
- Enhanced commodity production
- Enhanced hydrocarbon recovery
- $Ooldsymbol{CO}_2$ mineralization
- Chemicals production
- Requires: maturation of technologies, proximate location of capture and utilisation plants, potential commercial market, social acceptance

International Renewable Energy

Re-emission of utilised CO₂ and its time-scale

- Poses questions about the longterm consequences and difficult to trace CO₂ across multiple enduses
- Aim to lock-in CO₂ emissions for extended period of time
- Conflicting plastics or EOR lock-in effect, but detrimental to the environment

Timescale of release of CO ₂								
		Days	Days Weeks Months Decade		Decades	Centuries	Millenia	
of release	Low					Building materials	CO ₂ -EOR	
Likelihood of release	년 인 Urea, 프 methanol	CO ₂ derived fuels (Fischer-Tropsch derived fuels, methane, etc)		Plastics				
		methanol	Microal biofuels, or biop	biomass				

Scaled-up RD&D

- Encourage public-private
 international RD&D
- Build FOAK, demonstration and lighthouses projects everywhere
- Study and understanding public perception

Enabling conditions

- Develop policies,
 regulations and standards
- Institutions & organisations
- Financial support
- Hub-transport/storage
 networks models
- Open access to information
- Deployment of clusters with hard-to-abate industry

Sustainability

IRENA

insig

WEBINAR SERIES

- Sustainability of biomass
 for BECCS
- Consider LCA of emissions

REACHING ZERO WITH RENEWABLES CAPTURING CARBON

The status and potential of carbon capture and storage (CCS), carbon capture and utilisation (CCU) and carbon dioxide removal (CDR) technologies, and their synergies with renewables in the context of global pathways to net-zero emissions.

Thank you for your attention!

MLyons@irena.org

Q & A 10 min

THANK YOU FOR JOINING US!

SEE YOU IN OUR NEXT WEBINARS www.irena.org/events/2020/Jun/IRENA-Insights

