

Energy Solutions for Cities of the Future: Facilitating the Integration of Low-Temperature Renewable Energy Sources into District Energy Systems. Capacity building workshop

Technical challenges and solutions for integrating low-temperature geothermal energy resources: lessons learned from France

Dr. Miklos ANTICS President of EGEC GPC IP/GEOFLUID 165 rue de la Belle Etoile 95946 ROISSY CDG CEDEX FRANCE m.antics@geoproduction.fr www.gpc-france.com

Outline

- EGEC market report on district heating in Europe
- ETIP DG vision on unlocking geothermal energy
- The Paris Basin GDH system
- Innovation: Subhorizontal well architectures
- Innovation: Anticorrosion well concept

GEOTHERMAL HEATING - HEAT DEMAND

Why is heating so important - and where is it required ?

Industrial heat is a large share of the heat sector, with huge growth potential

Geothermal heating and cooling technologies

Deep geothermal in Europe: market overview

Two important milestones:

- 1) More than 3 GWe installed
- 2) More than 300 Geothermal DH in operation

....and soon 2 millions geothermal HPs !

Geothermal electricity in Europe:

- 3.1 GWe capacity
- 10% average annual growth rate over the last 5 years

Geothermal district heating in Europe:

• 5.1 GWth capacity

District heating // Summary of key conclusions

State of Play in 2018

- Over 5 GWth of geothermal DH
- <u>12 new or renovated plants over the last year</u>, 150MWth

300 Geothermal DH Plants

- 5 new project commissioned in the Netherlands
- 1 new and 3 renovated plants in France
- 1 new project in Serbia
- 1 new project in Belgium
- 1 new project in Germany

New plants for deep geothermal for heating and cooling in 2018 (capacity and number)

Number of GeoDH plants in operation and under development-investigation per country

PLANTS IN OPERATION IN 2018 PLANTS UNDER EXTENSION/DEVELOPMENT/INVESTIGATION

8

Deep geothermal for heating and cooling capacity per country (MWth)

Average size of deep geothermal heating and cooling plant per country

10

Number of new geothermal plants commissioned per year

11

Gap to deep geothermal heating and cooling objectives in NREAPs

12

EGE

Geothermal planned capacity per country (when data is available)

13

Typology of geothermal heating and cooling projects operators in Europe

More than 25% of the EU population lives in areas directly suitable for geothermal district heating

ICELAND POLAND NETHERLANDS CZECH REPUBLIC **SLOVAKIA** AUSTRIA 9 MWth FRANCE Temperature distribution at 1000 m: T > 50°C at 2000 m· T > 90°0 SWITZERLAND Other potential reservoirs ITALY 22 MWth ROMANIA

Map of areas suitable for geoDH networks and actual geoDH installed capacity according to available geological data

Source: ETIP-DG, adapted from GEODH and EGEC market report

https://map.mbfsz.gov.hu/geo_DH/

```
Legend
                                                                                                                                         geo_dh
   ICELAND.
                                                                                                                                         Cities with geotermal district heating
C Reykjavík
                                                                  SWEDEN
                                                                                                                                         Cities with district heating
                                                                                     FINLAND
                                                     NORWAY
                                                                                                  Lake Syll
                                                                                                 Ladoga
                                                                                       Helsinki
                                                                                                                                         Other potential reservoirs
                                                             Galo
                                                                                                 Q.Saint
                                                                           Stockholm
                                                                                                                                            Other potential reservoirs contour
                                                                                                  Petersburg
                                                                                    ESTONIA
                                                                                                                                            Other potential reservoirs fill
                                            North
                                                                            Baltic
                                                                                     TATVIA.
                                             Sea
                                                                                                               Moscow
                                                                                                              0
                                                                                LITHUANIA
                                                                  openhagen
                                                                                                                                         Hot sedimentary aquifer
                                                                                  Vilnius 0
                                                                                            o Minsk
                                                                                                                                            Hot sedimentary aquifer contour
                                                                                        BELARUS
                                                                                                                                            Hot sedimentary aquifer fill
                                                                                                 Kiev
                                                                                                 0
                                                                                             UKRAINE
                                                                                                                           Volgograd
                                                                                                                                          Neogene basins
                                                                                                                                            Neogene basins contour
                                                                                                                                            Neogene basins fill
                                                                                                                    GEORGIA
                                             Barcelona
                                                                                               tanbul
                                  Madrid
                                                                                                     Ankara
                     PORTUGAL
                                                                                                                                          Geothermal data
                               SPAIN
                                                                               GREECE
                                                                                                       TURKEY
                       OLisbon
                                                                                                                                            Heat-flow density; HFD>90mW/m2
                                                                                     Athens
                                         Algiers
                                                            Tuni
                                                                                                                                             OUNTAINS
                                                                                                                                            Temperature distribution at 1000m; T>50°C
                                                                                                             SYRIA
                                                                               Mediterranean
                      Casablanca
                                                     TUNISIA
                                                                                                             Damascus
                                                                  Tripoli
                                                                                                                            Baghdad
                                                                                                          Amman
                                                                                                                       IRAO
                                                                                                                                            Temperature distribution at 2000 m· T>90°C
```

~

Challenges

- Demand for Heat supply
- Firmness of electricity supply

Risks in investments

Two important news:

- New scheme established in 2018 in Denmark and in Flanders (Belgium)
- New scheme accounced for 2019 in Walloon region (Belgium)

Unlocking Geothermal Energy: Heat development

 > Operative temperatures of the DHC network can be reduced
 > By demand site management or by thermal energy storage it will be possible to balance heat demand and supply in a DH network.

Cascade applications

> CHP

Evolution of power generation and district heating

Unlocking Geothermal Energy: Power development

Improved efficiency, optimization of material, processes, cycle design

> Hybrid, proper combination

Cutting edge technologies for any kind of resource (super-hot, off-shore, geopressurized) and any place (from remote islands to urban areas)

Combined biomass and geothermal plant in Cornia, Italy

Unlocking Geothermal Energy: Combined production

CHP Carr

In the RES based interconnected energy networks geothermal and underground thermal storage play an important role

> Coupling renewable heat and electricity sectors and markets for an optimal use of geothermal energy

> Consumer-producerprosumer perspectives

> Thermal storage to help balance and to optimize production

> Cascade, hybrid, synergy (e.g. geothermal-algaebiofuels-transport)

PARIS BASIN - GEOLOGICAL SKETCHES

target reservoir horizons

E

RMAL

PARIS BASIN GDH STATUS

RESERVOIR ENGINEERING AN INTEGRATED APPROACH

PARIS BASIN GDH SCHEME

TYPICAL LOAD DURATION CURVE

TYPICAL GDH WELL ARCHITECTURE

CORROSION AND SCALING ABATMENT. AUXILIARY INJECTION TUBING WITH FO

PARIS BASIN. TYPICAL GEOTHERMAL SITES

EGEC

GDH DESIGN AND MONITORING

RISK ASSESSMENT SUCCESS/FAILURE CRITERIA

Numerical application:

CAPEX=12 10⁶ € OPEX= 5 10⁵ € n=20 years nh=8256 hr/yr r=5% (total failure)

r=10% (total success) Full equity (no debt) Subsidies=0 ; 25% CAPEX c=35 ; 40 ; 45 €/MWht $T_i=40$; 45; 50°C

TYPICAL COST BREAKDOWN (103 €)

САРЕХ			OPEX		
Mining	min	max	Mining	min	max
Well drilling/completion	8500	9000	P1 Power, chemicals, consummables	200	250
Primary (geothermal) loop	1200	1300	P2 Monitoring, light maintenance	75	90
Geothermal heat exchanger	300	400	Heavy duty maintenance, well workover, on duty call	250	300
Total	10000	10700	Miscellaneous	30	50
			Total	555	690
Surface			Surface		
Secondary (grid) loop	600	700	P1 Power, chemicals	40	50
Heat plant	800	900	P2 Heat plant/grid monitoring/maintenance	400	450
Grid (piping)	8000	10000	P3 Provisions for depreciation	250	350
Grid (substations)	2500	3000	Miscellaneous	40	60
Total	11900	14600	Total	730	910
GRAND TOTAL	21900	25300	GRAND TOTAL	1285	1600

	BREAK	SELLING COST			
	WORST CASE	BEST CASE	MEDIUM CASE		
CAPEX (10³€)	25000	22000	23000		
OPEX (10³€/yr)	1600	1285	1400		
SUBSIDY (% CAPEX)	0	35	25		
BREAKEVEN (€/MWh₊)	81	56	64		

FROM COMMISSIONING TO START UP TYPICAL GDH COMPLETION SCHEDULE

Nom de la tâche	Début	Fin	ö	2011 2012 ND J FMAMJ J A SOND J FMAMJ J A S	2013 ONDJEMAMJJAS	2014 ONDJFMAMJJAS	2015 ONDJEMAMJJA]	
START	Lun 01/11/10	Ven 26/11	/10 🕻			lanna haran haran dari si dari dan sa baran kasa di perukana kasa dari dari			
Project Commissioning	Lun 01/11/10	Ven 21/01	/11						
Feasibility study	Mar 01/02/11	Lun 07/11	/11	v					
Exploration permit	Ven 01/07/11	Jeu 03/05	/12		-				
Land acquisition	Mar 01/11/11	Lun 28/11	/11	W					
Budget setup	Jeu 01/12/11	Ven 27/01	/12	w w					
1									
Negotiation of EUR/National support	Mer 01/02/12	Mar 22/05	5/12	v				1	
Call for tenders (TOR)	Mer 01/02/12	Mar 22/05	5/12						
Tendering	Ven 01/06/12	Jeu 07/03	8/13					1	
Site preparation. Well drilling/completion	Ven 01/11/13	Lun 30/03	8/15						
Surface works. Heating grid & substations	Ven 01/11/13	Jeu 19/02	2/15			W			
Geothermal & Back-up/relief heat plant	Mar 01/04/14	Mar 30/06	6/15			Ψ			
									FGFC
Start up	Mer 01/07/15	Ven 31/07	/15						GEOTHERMAL
	ahaaaaaaaaaaaaaaaaaa								

INNOVATION: SUBHORIZONTAL WELL ARCHITECTURES

WEAST EAST CROSS SECTION

The Dogger (Bathonian member) target reservoir is hosted by the Upper part of the carbonate platform.

Within the platform oolithic limestone sequences exhibit high connected porosities and related permeabilities portraying a dependable multilayered reservoir structure.

LOCATION Target area CREIL ILLIEDS IE. GARGE ANC.MESNI ILLENEUVE-LA VILLEJUI BAGNEU ACHERES NY-SOUS-BOIS LA-CELLE-SAINT-CLOUD CACHAN 3C CLICHY-SOUS-BOIS CHELLES SONS-ALEORT 1 & 2 ARCUEIL -GENTHT HAMPIGNY LOGNES SUCY-EN-BRIE LES ROSES LARUE iector wel projected doublet -----operating doublet VILLENEUVE St GEORGES projected triple - EPINAY-SOUS-SENART projected subhoriz ONTGERON GFR2 fallback remedial opt VIGNEUX GRIGNY 1 & 2 exploration les FRESNES -LE MEE-SUR-SEINE Projected triplet MELUN L'ALMONT CACHAN SITE AND SURROUNDING Operating triplet Projected doublets DAMMARIE-LES-LYS VAUX-LE-PENIL DH DOUBLETS/TRIPLET Operating doublet Abandonned double FONTAINEBLEA PARIS BASIN GEOTHERMAL DISTRICT HEATING (GDH) STATUS EGE

SUBHORIZONTAL WELL (SHW) CONCEPT AND EXPECTATIONS

- General
 - **Optimise** land occupation in densely populated urban environments
 - Added value to presently unchallenged low permeability reservoir settings
 - Maximise geothermal exposure & minimise drilling/completion risk
 - Upgrade geothermal well architecture & reservoir evaluation standards

• Site specific

○Well architecture → Innovation
 ○Extend exploitation until 2045 → Sustainability
 ○Increase capacity 350->450/500 m³/hr → Well
 ○CAPEX/OPEX reduction → Economy

 \rightarrow Geology

Multilayered reservoir appraisal

36

SHW DOUBLET ARCHITECTURE AND OFFSET WELL TRAJECTORIES

a) Well architectures

c) SHW and candidature offset well trajectories

CHALLENGE. GEOSTEERING. WELL GCAH2 REAL TIME TRAJECTORY CORRECTIONS

Challenge: Real time trajectory corrections

- 1 to 5° varying dips, impacting drain effetive length
- Reconcile tracking of thin (#1 m) high porosity layers with target matching delays induced by high bit to RSS recording distance (#20 m)

ANTICORROSION WELL CONCEPT. BONNEUIL-SUR-MARNE

ANTICORROSION WELL CONCEPT

Present well architecture addresses an artificial lift, pump sustained, production, which implied significant design modifications, chiefly:

(i) an upper, wider (13"3/8OD -11.97" ID) liner section acting as a pumping chamber, sized to accommodate a 500 HP rated ESP, placed under compression between the wellhead and the lower section;

(ii) a lower and slimmer (9"5/80D –7.74" ID), freely suspended production liner;

(iii) a (13"3/8x9"5/8) liner connecting system, placed at the (20"x13"3/8) casing interface, allowing for a free annular fluid (a make-up corrosion inhibitor agent) passage, indeed a key issue, and,

(iv) a wellhead expansion spool. The additional capital investment costs (ca 20% compared to a conventional 13"3/8x 9"5/8steel cased well architecture) will get payed back in less than eight years thanks to yearly OM costs savings.

Given the foregoing, it is expected this, smart well, material answer to thermochemically hostile corrosive fluid environments, elsewhere securing well longevities and low operation/maintenance (OM) costs, raises due interest among geothermal operators and stakeholders.

PUITS TUBE ACIER/COMPOSITES COMBINED STEEL CASING/FIBER GLASS LINING WELL

ANTICORROSION WELL CONCEPT. IMPLEMENTATION AND RESULTS

THANK YOU FOR YOUR ATTENTION

