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Abstract 
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estimates of interfuel and interfactor elasticities of substitution using the between and long-
run difference estimators using and a panel of Chinese provincial data. We also improve on 
previous studies by adding total factor productivity terms to our regressions. Our results are 
quite different and more plausible than previous research and, as expected, our estimates of 
elasticities are larger than traditional fixed effects estimates. 
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1. Introduction 

In this paper, we use the between estimator and a long-run difference estimator to estimate 

interfuel and interfactor elasticities of substitution using the translog cost function and a panel 

of Chinese provincial data. We also improve on previous studies by adding total factor 

productivity terms to our regressions, which should eliminate the main source of correlation 

between the regressors and the error terms. Our results are quite different to some previous 

estimates for China but are close to what would be expected for long-run estimates of 

elasticities of substitution from meta-analyses. 

Meta-analysis of interfuel shadow elasticities of substitution for coal, oil, gas, and electricity 

(Stern, 2012) shows that the type of data – time series, panel, or cross-section – and the 

estimator used in the primary studies strongly affect their econometric results. Stern (2012) 

found that interfuel shadow elasticities of substitution from cross-section studies are greater 

than unity for all combinations of fuels apart from coal and electricity. Elasticities of 

substitution are generally smaller for OLS and fixed-effects panel estimates and time series 

estimates. Koetse et al. (2008) found similar results for capital-energy elasticities of 

substitution. But only two of the studies in the database analyzed by Stern (2012) used cross-

section estimates and so more cross-section estimates would be desirable. However, cross-

section estimates may be biased as they only utilize a single time series observation (Pesaran 

and Smith, 1995). Econometric theory (Pesaran and Smith, 1995; Griliches and Mairesse, 

1984; Mairesse, 1990; Hauk and Wacziarg, 2009) suggests that the between estimator – a 

cross-sectional regression on the mean values over time for each individual - will produce 

consistent estimates of long-run elasticities under ideal assumptions and produce less biased 

estimates than traditional panel data estimators in the presence of misspecifications. But this 

estimator has not been used in the context of interfuel and energy-capital substitution. 

Chirinko et al. (2011) suggested instead that the interval difference estimator, which uses the 

differences between two time series averages, might provide superior estimates of long-run 

substitution possibilities. They used this estimator to estimate the elasticity of substitution 

between capital and labor using a CES production function but this estimator has also not 

been applied to interfuel or capital-energy substitution possibilities. 

Estimates of interfuel and energy-capital elasticities of substitution are particularly relevant to 

the estimation of the costs of climate mitigation. There are widely divergent opinions on the 

costs of climate mitigation policies and their impact on economic growth. There has been 
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extensive work on modeling the costs of climate change mitigation and adaptation using the 

tools of computable general equilibrium (CGE) models. Such models critically depend on 

research on the possibilities for technological change and substitution between energy and 

other inputs and among fuels. The parameters that govern these possibilities – the elasticities 

of substitution - “are the single most important parameters that affect the[ir] results.” 

(Bhattacharya, 1996, 159). Furthermore, “in the economic literature, there is little consensus 

about different elasticities for energy products” (Bhattacharya, 1996, 159). Stern (2012) 

found a large dispersion in the estimated elasticities of substitution between fuels and that 

estimates based on time-series such as those used in the G-Cubed (McKibbin and Wilcoxen, 

1999) or IGEM (Goettle et al., 2007) models tend to underestimate the long-run possibilities 

of substitution between inputs. Similar results were found by a meta-analysis of substitution 

possibilities between energy and capital (Koetse et al., 2008). As China is the largest emitter 

of greenhouse gases, better estimates of Chinese elasticities are important for estimates of 

mitigation possibilities and costs. 

A second methodological contribution of this paper is that we add province level inefficiency 

and technical change terms to our interfactor cost function equation. We compute these using 

index number methods and then add them to the regression models. There are very 

substantial productivity differences between provinces. Taking these into account means that 

our results are quite different from previous estimates of substitution elasticities for China. 

We use Chinese data that is similar to that previously used by H. Ma et al. (2008, 2009).1 

This Chinese data has a good balance of time and cross-section dimensions compared to 

other datasets used in the literature (Stern, 2012) and so is suitable for evaluating different 

panel data estimators. Our dataset consists of province level data on quantities of the final use 

of individual fuels and electricity, capital, and labor, and the price series from the provincial 

capitals, which we use to proxy provincial prices. This data has a cross-section dimension of 

30 and a time series dimension of eleven years. We aggregate the various types of coal into a 

single coal input and estimate the energy cost function and cost share equations for coal, 

gasoline, diesel, and electricity. We also aggregate all energy types into a single energy input 

and carry out a similar analysis for capital, labor, and energy. The disadvantage of this 

                                                
1 Our data covers the period 2000-2010 whereas H. Ma et al. (2008) used the period 1995-
2004. 
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dataset is that there are no natural gas variables in the data and so we can only provide 

information on three of the elasticities of substitution analyzed by Stern (2012). 

The paper follows the usual layout with the methods section following this introduction, a 

section describing the data and then the econometric results are presented. The final two 

sections discuss the results in the context of previous estimates and provide conclusions. 

2. Methods 

a. Background 

Differences between time-series and cross-section estimates have long been discussed in the 

econometric literature (Baltagi and Griffin, 1984). In recent decades, this interest has been 

transferred to panel data, as time-series and cross-sections can be seen as special cases of 

panels with a cross-section or time dimension of one, respectively. 

Apostolakis (1990) and Bacon (1992) surveyed some of the early studies of interfuel 

substitution elasticities in the OECD countries. Bacon found that panel data studies tended to 

find more substitutability between fuels as measured by their cross-price elasticities than did 

time-series studies. He suggested that this was because this data represented long-run 

elasticities, while time-series data generated short-run elasticities. Apostolakis (1990) came 

to similar conclusions regarding substitution between aggregate energy and capital. Though 

short-run elasticities of substitution can be defined and estimated (Mundlak, 1968; Sharma, 

2002), the usual definitions of elasticities of substitution are based on long-run responses and, 

therefore, long-run estimates are desirable. As mentioned in the introduction, recent meta-

analyses of the interfuel elasticities of substitution (Stern, 2012) and the capital-energy 

elasticity of substitution (Koetse et al., 2008) literatures find that the largest elasticities of 

substitution are produced by cross-section estimates and the smallest by time series estimates 

with fixed effects estimates somewhere in between. Koetse et al. (2008) find a mean 

Morishima elasticity of substitution in time-series data of 0.22, in panel data of 0.59, and in 

cross-section data of 0.85. Stern (2012) finds an average shadow elasticity of interfuel 

substitution of 0.49 for time series estimates, 1.05 for OLS panel estimates, 1.06 for fixed 

effects estimates, and 1.60 for cross-section data. 

Pesaran and Smith (1995) point out that, if the true data generating process is static, the 

explanatory variables are uncorrelated with the error term, and any parameter heterogeneity 

across individuals is random and distributed independently of the regressors, all the usual 
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estimators – time-series, cross-section, and panel OLS, fixed and random effects, and 

between estimates - should be consistent estimators of the coefficient means. It is the 

presence of dynamics and/or correlation between the regressors and the error term that results 

in differences between the estimators. There is no essential difference between time-series 

and panel estimates, only differences in the likely importance and impact of misspecification. 

They argue further that, in the absence of correlation between the regressors and the error 

components, the cross-sectional average of dynamic time-series models for each individual 

and BE are consistent. But a traditional cross-section estimate – BE for a single period - may 

suffer from a high level of bias. In the presence of coefficient heterogeneity, FE and RE 

estimators for dynamic models will be inconsistent, as forcing the coefficients to be equal 

induces serial correlation in the disturbance, which results in inconsistency when there are 

lagged dependent variables. If the true model is static, static FE and RE should be consistent 

in the absence of other misspecifications. When the true model is dynamic, the higher the 

level of correlation between the dependent variable and the lagged variables omitted by a 

static estimator, the closer static estimates will be to the long-run coefficients (Baltagi and 

Griffin, 1984). In the non-stationary case, static time-series estimates are superconsistent 

when the variables are I(1) and cointegrate. But, if the parameters vary across groups, the 

pooled estimates need not cointegrate. BE also consistently estimates the long-run 

coefficients when the explanatory variables are non-stationary but strictly exogenous even if 

there is no cointegration (Pesaran and Smith, 1995).  

However, the assumption that the regressors and errors are uncorrelated does not necessarily 

hold. The one-way error components model assumes that the error term in a panel model is 

composed of an individual effect, which varies across individuals but is constant over time, 

and a remainder disturbance that varies over both time and individuals (Baltagi, 2008). If 

omitted explanatory variables are correlated with the included regressors, the regressors will 

be correlated with the individual effects and/or the remainder disturbance (Griliches and 

Mairesse, 1987). The fixed effects estimator eliminates the individual effects prior to 

estimation while the between estimator averages over the remainder disturbances of each 

individual. Therefore, OLS panel, RE, BE, and cross-section estimators will be biased if the 

regressors are correlated with the individual effects and FE and time-series estimators will be 

unbiased. But if the correlation is with the remainder disturbance instead, BE will be 

consistent and all the other estimators will be inconsistent (Griliches and Mairesse, 1987). 
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Measurement error in the explanatory variables is also problematic in this context as it 

induces a correlation between the error term and the regressors and biases the estimates 

towards zero (Hausman, 2001). If measurement errors are non-systematic, BE will average 

them out over time and will be consistent but biased when the time-series dimension is small, 

while FE amplifies the noise to signal ratio by subtracting individual means from each time-

series (Mairesse, 1990). Hauk and Wacziarg (2009) conducted a Monte Carlo analysis of an 

economic growth equation to examine the effects of combined measurement error and 

omitted variables on alternative panel estimators. The former would be expected to affect FE 

more and the latter to affect BE more. They found BE to have the minimum bias relative to 

FE, RE, and some GMM estimators commonly used in the growth literature. Other papers 

that find superior performance for BE compared to other potential estimators are Pirotte 

(1999) and Egger and Pfaffermayr (2004). 

We can reduce the potential correlation between the regressors and the individual effects by 

including additional variables that vary across individuals and are usually omitted from 

regression analyses. In the case of cost share and cost function equations, the most important 

omitted variable is likely to be the state of technology. Total factor productivity (TFP) varies 

across Chinese provinces and it is likely that TFP is correlated with input prices. For 

example, coal is cheaper and TFP lower in the poorer inland provinces. Of course, wage rates 

will be highly correlated with TFP. Therefore, we may obtain more consistent results by 

including TFP as an additional variable in the cost function equation for the interfactor 

estimates. In this study, we compute these TFP indices both across provinces and over time 

and include these in the regressions as appropriate. 

Chirinko et al. (2011) also propose a method intended to capture long run rather than short 

run variation – the interval difference estimator (IDE). They compute the average of each 

variable over two periods of seven years and then compute the difference between the two 

periods. The estimator uses the cross-section of these interval differences. They interpret this 

estimator “in terms of a low-pass filter placing relatively more weight on low-frequency 

movements than the traditional approach of first-differencing” (588). They argue that IDE is 

robust to several potential issues including unit roots, omitted variables bias, misspecified 

dynamics, and measurement error. With the exception of omitted variables bias, these are the 

same problems that motivate adoption of BE. In a departure from Chirinko et al. (2011), we 

compute the differences from the first to the last time series observations in our sample. This 
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allows us to exploit more of the variation in our short sample of 11 years. Differences 

computed in the two different ways are highly correlated. This estimator then uses the cross-

section of differences over time whereas the between estimator uses the cross-section of 

averages over time. 

Chirinko et al. (2011) argue that the differenced regressors will likely not be correlated with 

the productivity shocks but they also provide constant returns to scale and instrumental 

variable estimates in case they are. Instead, we include estimates of the productivity shocks 

by including the long-run differences of the provincial TFP variables mentioned above.  

The relatively regulated energy price regime in China means that the assumption that energy 

prices at the provincial level are exogenous and driven mostly by differences in transportation 

costs is not unreasonable. However, following Pindyck (1979), we also use an IV method to 

take into account the possible endogeneity of price indices for coal and energy in our 

interfuel and interfactor analyses respectively in both our IDE and BE models. 

b.  Model 

Assuming constant returns to scale, the translog cost function for a panel of provinces is 

given by: 

lnCit = !0 + lnDit + ft + ! j lnPjit
j=1

J

! + 0.5 ! jk lnPjit lnPkit
k=1

J

!
j=1

J

! + " jt lnPjit
j=1

J

! +#it   (1) 

where C is unit output cost, P are the prices of the J inputs indexed by j and k, i indexes 

provinces, and t years. All log prices and the linear time trend are normalized at the sample 

mean. The first parameter on the RHS is a national mean effect, the second a provincial 

efficiency effect, which varies over time and is zero in the most efficient province,2 and the 

third is a national time effect with mean zero. The final term in the equation is a stationary 

random error term with a mean of zero.  

                                                
2 The inefficiency term is the log of the distance of the province from the efficient frontier. A 
distance of unity places a province on the frontier and hence the log of distance in this 
province – in our sample Shanghai – is zero. See the next subsection for details of 
computation of distance and TFP. 
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As we assume constant returns to scale, in our interfactor analysis C is total cost per unit of 

real gross output.3 In our interfuel analysis, C is the cost per unit of energy calculated as cost 

of energy divided by the aggregate energy input index (Pindyck, 1979). We do not include 

provincial TFP terms in the interfuel function. However, we do include the technical change 

bias terms. The IDE model allows implicitly for national level technological change if it 

includes a constant term in the cost function equation, as we will see below.  

We impose the standard homogeneity and symmetry conditions on the parameters in all our 

estimates. Homogeneity of degree one in prices is imposed by deducting the log price of the 

Jth input from the prices of the first J-1 inputs. For the interfuel analysis we use the price of 

diesel as the Jth or numeraire and for the interfactor analysis we use the price of labor as the 

Jth or numeraire. The cost function should also be concave in input prices. We test the 

concavity of the cost function at the reference point. We found that the concavity assumption 

was violated for the interfuel substitution model but not for the interfactor substitution model. 

Therefore, we imposed concavity on the interfuel model using the method of Ryan and Wales 

(2000). However, we report the original coefficients of the cost function as in equation (1) 

rather than the coefficients estimated in the Ryan and Wales method and we compute their 

standard errors using the delta method. 

The standard cost share equations based on Shephard’s Lemma (Shephard, 1953) are given 

by: 

Sjit = ! j + ! jk lnPkit
k=1

J

! +" jt +# jit , !j =1,..., J "1      (2) 

Only the first J-1 equations need to be estimated as the shares sum to unity. Using the Jarque-

Bera test we could not reject the hypotheses that both the share data across provinces and the 

differenced share data are normally distributed. Hence the simple cost share functional form 

is appropriate. Applying the between estimator to (2) implies estimating the cross-sectional 

regressions: 

M Sjit( ) = ! j + ! jkM lnPkit( )
k=1

J

! +M ! jit( ) , !j =1,..., J "1     (3) 

                                                
3 See the following subsection for details of the computation of gross output. 
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where M() is the mean over time operator. As explained above, we deduct the sample mean 

of the logs of the price variables prior to averaging. ! j is then an estimate of the cost share 

when all prices are at their means in all provinces and can be used in elasticity formulae 

(Stern, 2011). Because of its zero mean, the technical change bias has been averaged away. 

The simplest approach is to estimate only the J-1 equations (3), imposing the cross-equation 

symmetry restrictions. However, better estimates might be obtained and degrees of freedom 

increased by jointly estimating (3) and the cost function itself (Leon-Ledesma et al., 2010). 

Averaging (1) over time yields: 

M lnCit( ) = !0 +M lnDit( )+ ! jM lnPjit( )
j=1

J

! + 0.5 ! jkM lnPjit lnPkit( )
k=1

J

!
j=1

J

! + ! jM t lnPjit( )
j=1

J

! +M !it( )

 
           (4) 

The sample means of the log prices and the time trend are first deducted before any other 

operations – creation of the various interactions and averaging – are carried out. We also 

deduct the mean of the log of cost, though this only affects the estimate of !0 , but we do not 

demean the distance variable. Also, the national time effect, but not the technical change bias 

terms, has been averaged away.4 We impose a coefficient of unity on the distance variable by 

subtracting it from both sides of (4). Estimating (3) and (4) jointly takes advantage of cross-

equation restrictions but no cross-equation restrictions can be imposed on the ! j  coefficients. 

As IDE involves differencing rather than averaging, the estimation equations are different. 

Differencing (2) yields: 

D Sjit( ) = ! jkD lnPkit( )
j=1

J

! +! jD t( )+D ! jit( ) ,!j =1,..., J "1     (5) 

where D() is the interval differencing operator and the constant term has been differenced 

away. The estimation equation for the cost function is: 

                                                
4 As the translog function is non-linear the mean value of cost may not coincide with the 
sample mean of the prices. Therefore, it is not appropriate to instead use (1) with the time 
averaged means of the variables substituted in places of the time series of the variables. 
Instead the interaction terms should be computed first and then averaged. Also the biased 
technical change component of the time effect is not averaged away because, in general,

 but . M t( )M lnPjit( ) = 0 M t lnPjit( ) ! 0
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D lnCit( ) = ! jD lnPjit( )
j=1

J

! + 0.5 ! jkD lnPjit lnPkit( )
k=1

J

!
j=1

J

! + ! jD t lnPjit( )
j=1

J

! "D lnAit( )+D !it( )  

           (6) 

where Ai is an index of TFP in province i in year t and combines the provincial inefficiency 

and national time effects in (1). We impose a coefficient of minus one on this variable by 

adding it to both sides of (6). As we did for BE, the sample means of each price and time 

variable are first deducted before any other operations – creation of the various interactions 

and differencing – are carried out. Estimating (5) and (6) jointly takes advantage of cross-

equation restrictions but no cross-equation restrictions can be imposed on the ! j  coefficients. 

For the interfuel model we do not include the TFP term but we do include the constant D(t) 

while in the interfactor model there is no constant in the cost function equation. 

In order to compare our proposed estimators to more conventional approaches we also 

estimate a fixed effects model. The cost function is estimated using: 

F lnCit( ) = F lnDit( ) ! jF lnPjit( )
j=1

J

! + 0.5 ! jkF lnPjit lnPkit( )
k=1

J

!
j=1

J

! + ! jF t lnPjit( )
j=1

J

! +!it (7) 

where F() is the fixed effects operator that first subtracts provincial means from each of the 

time series and then subtracts national time means from each time period. Therefore, we use 

both provincial and annual effects. We estimate the cost share equations using the following 

equations: 

F Sjit( )+ Sj = ! j + ! jkF lnPkit( )
k=1

J

! +! jit , !j =1,..., J "1     (8) 

where Sj is the national mean cost share, which we add in order to get better estimates of the 

βj parameters by equating their value in (7) and (8). 

As we aggregate various types of coal into a single coal input using the Divisia index in the 

interfuel model and similarly aggregate the various types of energy into a single index in the 

interfactor model, the aggregated coal and energy prices is quantity weighted and 

endogenously chosen. We follow Pindyck (1979) and use instrumental variables to estimate 

the models. We represent the price of aggregated coal (i.e. the average cost of aggregated 

coal for a producer choosing different coal products) by a homothetic translog cost function 
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with constant returns to scale. Estimation of the share equations implied by this cost function 

allows us to generate the fitted cost function, which provides an instrumental variable for the 

price of the aggregated coal input. We also create additional instrumental variables for the 

interactions between the coal price and other variables by interacting the fitted price of the 

aggregated coal with the prices of other inputs and time. We follow the same procedure for 

the interfactor substitution estimation. We estimate the share equations implied by a 

homothetic translog cost function for the price of the aggregated energy input, and then 

generate instruments using the fitted energy cost and its associated interactions.  

c. Computing Gross Output and Distance and Total Factor Productivity 

Gross output and value added are related as follows: 

PGG = PQQ!PEE          (9) 

where Q is gross output, G is GDP , and E is energy and the Pi are their prices as indicated by 

the subscripts.5 As the price of gross output is unobserved, assume that the price of GDP and 

gross output are equal and then compute gross output as follows: 

Q =G + PE
PG
E           (10) 

Based on Hsieh (2002), we compute total factor productivity starting from the assumption 

that the value of output must equal the value of input and so the ratio of the value of output in 

two different provinces or years i and j must equal the ratio of the value of their inputs: 

PQjQj

PQiQi

=
PkXkj

k
!
PkiXki

k
!

= PjiX ji

 
       (11) 

where and  are indices for the difference in prices and difference in quantities of inputs 

across the two provinces or years. Then rearranging (9) we have: 

                                                
5 Obviously, gross output should really also add back in the value of all other intermediate 
inputs besides energy, but then we would need to also include these inputs in our cost 
function. Given data limitations, the only intermediate input we consider is energy.  

Pji X ji
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Qj

Qi

/ Xji =
PQi
PQj

Pji          (12) 

Given that the LHS is the primal index of the TFP difference between two provinces or years 

as given by Feenstra et al. (2013), the RHS is the dual index of the TFP difference between 

the two provinces. The logic of the formula on the RHS is that if input prices are relatively 

high in a province or year compared to output prices then that province or year must be 

relatively productive (e.g. high wage). Following Feenstra et al. (2013), who use the Divisia 

index to approximate the quantity index, we approximate the price index using the Divisia 

index.  

For IDE we compute a TFP time series for each province using the RHS of (12) and then take 

the difference in log TFP between the last and first years for each province. For BE we 

compute the relative TFP of each province i to the TFP in the most productive province, j 

(Shanghai). This is, therefore, the distance of each province from the efficient frontier. We 

compute the distance of all provinces in each year; take logs, and then average across years in 

each province. 

d. Elasticities 

We compute own and cross-price elasticities and Morishima and shadow elasticities of 

substitution. For the normalized translog cost function, the own and cross-price net 

elasticities at the sample mean are given by: 

!ii =
! lnXi

! ln pi
=
"ii +"i

2 ""i
"i

         (13)
 

!ij =
! lnXi

! ln pj
=
"ij +"i" j

" j         
(14) 

We compute standard errors for these mean elasticities using the delta method. Positive 

cross-price elasticities indicate p-substitutes and negative cross-price elasticities p-

complements.6 Morishima and shadow elasticities of substitution measure the difficulty of 

                                                
6 p-substitutes and complements are the standard definitions of substitutes and complements 
measuring the response of factor quantities to changes in factor prices. By contrast q-
substitutes and q-complements are defined by the reaction of factor prices to factor quantities. 
Inputs are usually q-complements – an increase in the level of other inputs increases their 
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substitution by measuring the response of the factor quantity ratio to a change in the factor 

price ratio holding the prices of other inputs and output constant. Values between zero and 

unity indicate poor substitutability and values above unity high substitutability.7 Unless cost 

is also held constant, the response of the factor quantity ratio depends on which price in the 

price ratio changes. The Morishima elasticities are asymmetric because they do not hold cost 

constant while the shadow elasticities are symmetric because they hold costs constant. The 

symmetric shadow elasticities are good summary statistics of the overall degree of 

substitutability between inputs. 

At the sample mean, the Morishima elasticities of substitution for a change in the price of 

input i is given by: 

µij =
! lnXj

! ln pi
"
! lnXi

! ln pi
=
!ij +!i! j

! j

"
!ii +!i

2 "!i
!i

      (15)
 

The shadow elasticity of substitution at the sample mean can be expressed as the share 

weighted mean of the Morishima elasticities: 

! ij =
Si

Si + Sj
µij +

Sj
Si + Sj

µ ji =
"i

"i +" j

"ij +"i" j

" j

!
"ii +"i

2 !"i
"i

"

#
$$

%

&
''+

" j

"i +" j

"ij +"i" j

"i
!
" jj +" j

2 !" j

" j

"

#
$$

%

&
''

 
           (16)

 
Allen-Uzawa elasticities of substitution are frequently reported in studies of substitution 

possibilities but we do not report them.8 When there are only two inputs and constant returns 

to scale then the elasticity of substitution is unambiguously defined – the Morishima and 

Shadow elasticity formulae reduce to the Allen-Uzawa elasticity of substitution. But when 

there are more than two inputs this is not the case – the Allen Uzawa elasticities have the 

same sign as the cross-price elasticities and no longer measure the difficulty of substitution 

on a zero to infinity scale. On the other hand, they do not add any information beyond that 

                                                                                                                                                  
marginal product but could be p-complements or p-substitutes. Simply referring to inputs as 
complements or substitutes is, therefore, confusing (Stern, 2011). 
7 The former are often referred to as complements and the latter substitutes but this 
terminology is again confusing. When there are only two inputs they must be net p-
substitutes irrespective of the value of the elasticity of substitution. 
8 The Allen-Uzawa elasticities of substitution are equal to the cross-price elasticities of 
substitution divided by the relevant cost share: . !ij = 1/ Sj( )!ij
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contained in the cross-price elasticities and in fact obscure that information by dividing the 

cross-price elasticity by a cost share. 

Following Pindyck (1979), the total own and cross-price elasticities for fuel i with respect to 

the price of fuel j are given by: 

!ij
T =!ij +!EEŜ j          (17) 

where  is the own price elasticity of aggregate energy and Ŝ j  is the fitted cost share for 

fuel j. To compute the elasticity at the reference point we again substitute the estimate of! j

for Ŝ j . This only makes a difference for the own and cross-price elasticities and not the 

Morishima and shadow elasticities of substitution. To compute the total elasticities we will 

assume that the energy own price elasticity is a fixed known parameter. 

3. Data 
Our dataset consists of provincial level data for China for real provincial GDP, the quantities 

of the final use of seven individual fuels and electricity, capital, and labor, price series for 

capital and labor, and energy price series from the provincial capitals, which we use to proxy 

provincial energy prices. The data cover all provinces, province level municipalities, and 

autonomous regions of the People’s Republic of China except Tibet for the years 2000 to 

2010. Therefore, the panel has a cross-section dimension of 30 provinces and a time series 

dimension of eleven years. Table 1 provides summary statistics for these raw variables. This 

shows the extraordinary growth rates of many variables in China over this period. The 

exceptionally high growth rate for coal briquettes reflects growth from a very small base in 

2000 when several provinces did not report any use of this fuel. The growth rate for China as 

a whole was 32% per annum over the 11 years. 

We use three factor inputs: aggregate energy use, capital services, and labor use for the 

interfactor substitution analysis and four energy inputs: aggregated coal, gasoline, diesels and 

electricity for the interfuel substitution analysis. The energy data include five types of coal 

products, diesel, gasoline, and electricity. For the interfuel substitution analysis we 

aggregated the five types of coal into a single coal input. For the interfactor analysis we 

aggregated the eight types of fuel into a single energy input. The between estimator depends 

on variation in relative prices across the provinces. Therefore, we cannot set the base year 

!EE
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price or quantity index in each province to an arbitrary level as is often done in cost function 

analyses. Also, if we simply compute the average cost of energy per Joule in each province 

then the price will depend on the mix of fuels. High quality fuels such as electricity have 

much higher prices than low quality fuels such as coal. Therefore, we need to use index 

number methods to compute proper price indices for coal and energy for each province in 

each year. 

To do this, we first computed Laspeyres price indices for each province in each year, using 

the national average price of coal or energy in RMB per Joule as the base price. The 

Laspeyres index evaluates the price level in each province using the national average 

quantities as weights. The energy or coal price index in province i in year t is given by: 

Pit =
pijtqNjt

j
!

pNjtqNjt
j
!

         (18) 

where j indexes the different fuels or different forms of coal, p is the price of each fuel and q 

its quantity, and the N subscript indicates the national average price for that fuel. This gives a 

relative energy or coal price index for each province in each year but these prices cannot be 

compared across years. This can be addressed by multiplying these relative price indices by a 

national price index time series to obtain a time series in each province in each year. We use 

the Divisia index to compute the national level price index. 

The individual fuel consumption data are obtained from the China Energy Yearbooks (CEY). 

The CEY provides detailed data on final consumption of different fuel types by sector, 

province and year. Energy used as intermediate inputs, such as coal used to generate 

electricity and heat and to produce coke, is excluded. This study covers eight fuel types: 

steam coal, coking coal, coke, briquettes, coal gas, gasoline, diesel and electricity. We 

aggregate final consumption of each fuel type from the five sectors: “Farming, Forestry, 

Animal Husbandry, Fishery and Water Conservancy”, “Industry”, “Construction”, 

“Transport, Storage and Post” and “Wholesale, Retail Trade, Hotel and Catering”. Rural and 

urban residential consumption and fuel use for non-energy purposes are excluded. 

We collect fuel price data from two sources. China’s National Development and Reform 

Commission (NDRC) collects perhaps the most authoritative commodity price data from 36 
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large cities including all provincial capitals. We use fuel prices collected in the provincial 

capital cities as an indicator of provincial prices. As price collection is conducted by the 

NDRC three times a month, we have constructed an annual price series by taking the average 

of these price data for each province. China Price Statistical Yearbooks (CPSYs) provide the 

second source of data. The CPSYs reported provincial prices on twelve fuels including seven 

used in this study. Both the NDRC data and the CPSY data have missing values. Most 

missing values in the NDRC data appeared in early years while the CPSY ceased to report 

fuel prices after 2006. Where the value is missing in the NDRC data but available in the 

CPSY data, we use the value reported in the CPSY data to replace the missing value in the 

NDRC data. Remaining missing values in the NDRC data are then linearly interpolated. 

Total employment data, which include all employed persons in urban and rural sectors are 

obtained from the China Statistical Yearbooks (CSY). The CSY also provides an income 

approach decomposition of GDP as the sum of compensation of employees, net taxes of 

production, depreciation of fixed assets, and operating surplus. Compensation of employees 

includes the total payment of various forms to employees for the productive activities they 

are engaged in. It includes wages, bonuses and allowances, which the employees earn in cash 

or in kind. It also includes the free medical services provided to the employees and medicine 

expenses, transport subsidies and social insurance, and housing funding paid by the 

employers. Compared to wages, which were used in H. Ma et al. (2008), this is clearly a 

superior indicator for actual compensation of labor. Using total employment and total 

compensation, we can construct the price index for labor. 

The sum of the other three components of the decomposed GDP - net taxes of production, 

depreciation of fixed assets, and operating surplus - effectively gives the compensation of 

capital. Unfortunately, the CSY does not provide capital stock statistics. The capital stock 

series are taken from Wu (2009) with updated statistics obtained from the author. Using total 

compensation of capital and the capital stock series, we have constructed the price index for 

capital. Our measure of total compensation of capital is also superior to that used by H. Ma et 

al. (2008), who simply used the product of the capital stock and the price index of fixed 

assets reported in the CSY. 

Figures 1 to 3 show the variation in some of our constructed variables across China. In 2010 

the coal price index varies by roughly a factor of two across provinces (Figure 1). In general, 

prices are higher in the coastal provinces and cheapest in the mid-western and northwestern 
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provinces – Chongqing, Shaanxi, Ningxia, Nei Mongol, and Xinjiang. An anomaly is Shanxi, 

which has relatively high prices despite being a major coal-producing province, though this 

wasn’t the case in earlier years.  

Distance from the technological frontier varies by a factor of roughly three. Shanghai is the 

most productive province and Guangdong and Tianjin and other coastal provinces are 

relatively close to the frontier. The further from the frontier are the western provinces of 

Qinghai, Ningxia, and Guizhou. Figure 3 shows that there has been some convergence in TFP 

over time. The slowest TFP growth was in Beijing and the highest in Sichuan and Hainan. 

4. Econometric Results  
We use iterative seemingly unrelated regressions to estimate the fitted prices of the 

aggregated coal input for use as instruments in the interfuel substitution model and the fitted 

prices of the aggregated energy input for the interfactor substitution model.9 Then we 

estimate the BE model (3) and (4) simultaneously using iterative 3-stage least squares 

regression imposing symmetry and homogeneity restrictions for both the interfuel and 

interfactor cost function systems.10 We estimate the IDE model (5) and (6) in the same way. 

The diesel and labor prices are treated as the numeraire in the interfuel and interfactor 

estimations and we drop the corresponding cost share equations. We retrieve the parameters 

for these variables using the homogeneity restrictions and compute their standard errors using 

the delta method.11 We also test the concavity of the cost function at every data point and 

impose concavity using the method of Ryan and Wales (2000) if concavity is violated. 

4.1 Interfuel Substitution 

We first estimated the unconstrained interfuel substitution model using BE and found that the 

estimated energy cost function violates the concavity condition at all sample observations. 

The energy cost function estimated using unconstrained IDE is only concave at 58 out of the 

total 330 sample observations. Therefore, we impose concavity. Table 2 presents the results 

from the constrained BE and IDE estimation. Table 3 provides the implied own and cross 

price elasticities and Table 4 the Morishima and shadow elasticities of substitution. Figures 4 

and 5 illustrate the results graphically. 
                                                
9 To save space, these first-stage results are not reported but available upon request. 
10 We use the procedure NLSYSTEM in RATS. This estimates the model using the 
generalized method of moments and an optimal weighting matrix (Estima, 2010). Hence 
there is no need to request the program to compute robust standard errors. 
11 We use the procedure SUMMARIZE in RATS. 
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The parameters estimated using the two different methods are remarkably similar – the main 

differences are in the technical change biases, which are not subject to cross-equation 

restrictions in the BE estimates (Table 2). Both methods find coal-using technical change, but 

IDE finds gasoline saving and BE electricity saving technical change, with the other biases 

statistically insignificant. It is particularly remarkable that the estimated βi’s are very similar 

for the two estimators when IDE does not explicitly utilize cross-equation restrictions to 

estimate them. However, the concavity restrictions involve these parameters. The fixed 

effects estimates differ substantially in several cases from the BE and IDE estimates but are 

similar in most cases. 

A seemingly surprising result is that the average rate of cost reduction, ceteris paribus, given 

by the IDE estimates is 1% per annum. We would have assumed that it is hard to make 

technological progress in composing an energy aggregate from different fuels but this is 

apparently the case. 

The BE and IDE estimates of own- and cross-price elasticities are similar, but the IDE 

estimates are consistently greater in absolute value (Table 3, Figure 4). For IDE, all the own-

price elasticities are negative and statistically significant - gasoline demand is elastic and the 

demand for the other fuels inelastic especially that of coal. Among the significant cross-price 

elasticities, coal and electricity and diesel and electricity are complements and gasoline and 

diesel substitutes as would be expected. By contrast, the fixed effects estimates of elasticities 

are all very small. The reason for this is that the eigenvalues of the Hessian of the cost 

function are all positive for the unconstrained model. When we impose concavity on the 

model the elasticities are all forced towards zero in order to meet the restrictions. 

Moving on to the elasticities of substitution (Table 4, Figure 5), we make the following 

observations: 

• As expected given the parameter estimates, the elasticities estimated by the two 

estimators are similar but the BE elasticities are mostly smaller in absolute value and 

none of them is statistically significant.  

• Shadow elasticities of substitution between fuels are less than unity (indicating poor 

substitutability) except for gasoline and diesel, which are good substitutes. The 
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Morishima elasticities show that gasoline is a good substitute for coal and electricity if 

the gasoline price changes but not otherwise. 

• The substitution elasticity between coal and electricity is very close to zero. 

• In general, elasticities involving electricity appear to be smaller than other elasticities. 

The elasticities of substitution estimated using the fixed effects estimator are all 

indistinguishable from zero. 

4.2 Interfactor Substitution 

Again, we first estimated the cost function systems without imposing the concavity 

constraints. Using BE, the estimated cost function satisfies the concavity condition for most 

sample observations and is concave at the reference point. Using IDE, the estimated cost 

function is concave for all sample observations. Therefore, we did not impose concavity on 

the interfactor substitution models. Table 5 presents the results from the unconstrained BE 

and IDE estimation. Table 6 provides the implied own and cross price elasticities and 

Morishima and shadow elasticities of substitution. 

The BE and IDE parameter estimates differ more than the interfuel parameter estimates do 

(Table 5).12 BE finds no statistically significant technical change biases but some indication 

of energy-using and labor-saving biases, while IDE finds capital-using and labor-saving 

technical change. Fixed effects estimates also differ by a similar degree. Because of the much 

larger number of degrees of freedom all the FE parameter estimates are highly statistically 

significant. 

The BE and IDE estimates of the own- and cross-price elasticities (Table 6, Figure 4) are 

fairly different with no apparent pattern to the differences. All the own price elasticities are 

inelastic. The BE estimates finds that energy and capital are both substitutes for labor. The 

IDE estimates find that energy and capital are also substitutes. The FE estimates are mostly 

smaller or much smaller in absolute value.  

                                                
12 Wondering whether this is because there are no cross-equation restrictions on the βi’s and 
no concavity restrictions to impose them implicitly we restricted the βi’s to be equal to the 
mean cost shares. This did not change the other parameters by very much. 
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Moving onto the elasticities of substitution (Table 6, Figure 5), we have four key 

observations: 

• All Morishima and shadow elasticities of substitution between factors are significant and 

less than unity for the IDE estimator. 

• BE finds that capital and energy are poor substitutes with an elasticity of substitution that 

is insignificantly different from zero and finds that energy and labor and capital and labor 

are good substitutes, though only when it is the price of labor which changes. 

• For both estimators substitution elasticities are higher between energy and labor than 

between energy and capital. 

All the FE estimates of elasticities of substitution are smaller than their BE and IDE 

counterparts. 

5. Comparison with Existing Literature 
5.1 Interfuel Substitution 

The elasticities estimated in this study are mostly smaller than the elasticities for the United 

States estimated using meta-analysis (Stern, 2012). The latter are all greater than unity with 

the exception of the coal-electricity elasticity (0.176). 

But how do our estimates compare to previous estimates for China? Stern (2012)’s meta-

analysis included four studies: Fisher-Vanden et al. (2004), Hang and Tu (2007), H. Ma et al. 

(2008), and H. Ma et al. (2009). Two more recent studies are Serletis et al. (2011) who 

investigate interfuel substitution for a number of countries including China and Smyth et al. 

(2012) who examine interfuel substitution in the Chinese iron and steel sector. We 

summarize the results of these studies in Table 7 as shadow elasticities. We computed the 

shadow elasticities as described in Stern (2012). We use long-run Morishima elasticities from 

Serletis et al. (2011) and weight them using the average cost shares from the current study. 

The averages of the seven regions in H. Ma et al. (2009) are very close to the national 

estimates and so we do not report results from that study. We used the most recent estimates 

of Hang and Tu (2007) and Smyth et al. (2012). As they estimated a positive own price 

elasticity for electricity, their oil-electricity elasticity is negative in violation of theory. Data 

types and methods of estimation differ across the studies. Fisher-Vanden et al. (2004) is a 

firm-level cross-sectional analysis. Hang and Tu (2007) use a national level time series and 
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unconstrained logarithmic demand curves. H. Ma et al. (2008) also use a panel data set of 

seven Chinese regions and fixed effects estimation using the translog cost function. Smyth et 

al. (2012) estimate a translog production function using ridge regression for a time series 

from the iron and steel industry. Finally, Serletis et al. (2011) use a normalized quadratic cost 

function system with concavity imposed and fixed effects for a panel of data for China, India, 

South Africa, and Thailand. 

The most directly comparable study to ours should be that of H. Ma et al. (2008, 2009) who 

use an earlier version of the same dataset as us. However, the shadow elasticities from that 

study are almost inversely related to those from our study. In particular, their highest 

elasticity is for coal-electricity substitution which is our lowest elasticity and our highest 

elasticity which is for gasoline-diesel substitution is their second lowest. Our results seem 

more plausible as one would expect that it is easier to substitute between gasoline and diesel 

than between coal and electricity. The coal-electricity elasticity is the smallest in Stern’s 

(2012) meta-analysis. Apart from the difference in estimators – fixed effects vs. specifically 

long-run estimators – we impose concavity, which is one reason why even our fixed effects 

estimates are very different - and our data covers the period 2000-2010 whereas they used the 

period 1995-2004. We also include eight different fuel inputs while they only included four 

and there are other improvements in our data as mentioned above. 

Smyth et al.’s (2012) results are likely driven by using ridge regression with a single 

production function equation. Our results are more similar to those of Serletis et al. (2011) 

Fisher-Vanden et al. (2004), and Hang and Tu (2007). All these studies find a larger value for 

the oil-coal elasticity than for the coal-electricity elasticity. The elasticities found by both 

Serletis et al. (2011) and this study are smaller than those found by Fisher-Vanden et al. 

(2004). This is likely because the latter uses firm level intra-industry data and the former use 

macro-level data. Stern (2012) finds that macro-level elasticities are smaller than elasticities 

for disaggregated data. 

We also compare our results to a few single equation estimates of demand elasticities that use 

panels of Chinese provincial data. Burke and Liao (2014) find that the coal own-price 

elasticity in China has increased over time. Using a panel of provincial data from 1998 to 

2012 they obtain a “two-year elasticity” of -0.14 for a model that does not allow the elasticity 

to evolve over time. This is very close to our estimates. Allowing evolution over time, they 

estimate an elasticity of -0.3 for 2005 (personal communication). Cao and Xie (2011) 
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estimate that the long-run elasticity of demand for diesel is -0.86 between 1999 and 2007. 

This is very close to our IDE estimate of -0.88. 

5.2 Interfactor Substitution 

Koetse et al. (2008) conducted a meta-analysis of 34 studies of capital-energy substitution. 

Most studies included in this meta-analysis used data from before 1990 and there were no 

studies that included China. In fact, there are very few studies on interfactor substitution in 

China. Koetse et al. (2008) found that the short-run (time series) elasticities are around 0.4 

for North America and 0.15 for Europe. The long-run (cross-section) elasticities are slightly 

greater than unity in North America and around 0.8 for Europe. Our BE elasticity is 

obviously much smaller than these long-run elasticities (and insignificantly different from 

zero), while our IDE estimate is close to estimates for Europe and to Stern and Kander’s 

(2012) estimate for Sweden. The consensus is that the capital-labor elasticity is less than 

unity for the United States (Acemoglu, 2003; Klump et al., 2007). Here our IDE estimate is 

again closest to expectations for developed countries.  

Table 8 reports the available estimates for China. We use the cost shares from our study to 

weight the Morishima elasticities from other studies. We use Fan et al.’s (2007) estimate for 

1993-2003 and Smyth et al.’s (2011) estimates for 2007. Again a variety of methods and data 

were used to produce these results. Ma et al. (2008) estimate a translog cost function and 

share equations for a panel of seven Chinese regions, Fan et al. (2007) used only the cost 

share equations and a time series of national data, Mallick estimates a two input CES 

production function for a national time series, and Smyth et al. (2011) estimate a translog 

production function using ridge regression for a time series from the iron and steel industry. 

Our results are very different to Fan et al. (2007) and Smyth et al. (2011) who use less 

sophisticated methods. Our IDE capital-labor elasticity of substitution is almost identical to 

Mallick’s (2012). Compared to H. Ma et al. (2008), our energy-capital elasticity of 

substitution is smaller and our energy-labor and capital-labor elasticities of substitution are 

higher. The IDE estimates are closer to their estimates than the BE elasticities. There are a 

number of differences between our study and H. Ma et al.’s. We use a broader coverage of 

fuel inputs and a dataset covering a different period. More importantly, using wages will 

underestimate the actual compensation for labor and their studies also seemed to have used 

incorrect measures of capital services, which will undoubtedly overestimate the actual 
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compensation for capital. We employ the income approach to GDP, which provides more 

appropriate measures of labor and capital compensation. 

6. Conclusions 

In this paper, we use between and long-run difference estimators to provide estimates of 

interfuel (coal, gasoline, diesel, and electricity) and interfactor (capital, labor, and energy) 

elasticities of substitution for China. We also improve on previous studies by adding total 

factor productivity terms to our regressions. The results show that demand for coal and 

electricity in China is very inelastic, while demand for diesel and gasoline is elastic. There 

are limited substitution possibilities among the fuels with the exception of gasoline and 

diesel. The elasticity of substitution between electricity and coal is particularly low. 

Substitution possibilities are greater between energy and labor than between capital and 

labor. The results are quite different to some previous studies for China but coincide well 

with the patterns in meta-analyses for long-run estimates of elasticities of substitution. 

Interfuel and capital-energy elasticities of substitution are generally lower than estimates for 

the United States derived from meta-analyses (Koetse et al., 2007; Stern, 2012). These results 

need to be taken into account in CGE models used for assessing climate policy options in 

China. The marginal cost of abatement for a given reduction in emissions will be higher than 

would be predicted assuming that Chinese elasticities are the same as US elasticities as some 

models assume (Lu and Stern, 2014).  

Our findings potentially have significant policy implications at a time when the Chinese 

government is under mounting domestic and international pressure to reduce greenhouse 

gases emissions from burning fossil fuels and particularly coal. Some previous studies (e.g. 

H. Ma et al., 2008) are generally optimistic about the degree of difficulty in substituting 

cleaner energy for dirty coal. Our very low estimate of the elasticity of substitution between 

coal and electricity in final energy consumption suggests that replacing coal with renewably 

generated electricity in end-use applications will be costly. However, because our data are for 

final energy consumption, no inferences can be drawn from our study with regard to 

substitution between coal and cleaner sources including natural gas, wind and solar in the 

generation of electricity. Some may be optimistic about this substitution given the measures 

taken by the Chinese government in recent years to promote the penetration of cleaner energy 

sources and renewable energy in particular. However, this substitution potential may be 

limited by the fact that China still accounts for half of the annual global coal consumption 
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and half of that is consumed in the electricity sector. The government has implemented a 

number of retrofitting mandates to close down small and old generation units and replace 

them with new and large coal-fired units. This massive fleet of newly installed coal-fired 

units will lock the Chinese economy into a coal-dominated energy supply for the next two to 

three decades. 

The BE and IDE results are much more similar for the interfuel substitution system where 

concavity was imposed than for the interfactor substitution system where we did not need to 

impose concavity. It is unclear which of the two estimators should be preferred when they do 

diverge. As IDE imposes cross-equation restrictions on the technical change biases it 

probably produces more consistent estimates of these. Further research is needed on the 

performance of the estimators under alternative restrictions and conditions. However, we 

think that both estimators show potential for estimation of long-run elasticities of 

substitution. Our FE estimates of the interfuel cost share system had very poor curvature 

properties and when we imposed concavity all the interfuel elasticities of substitution 

effectively became zero. FE estimates of the interfactor system had adequate curvature 

properties but all the elasticities of substitution are smaller than their BE and IDE 

counterparts. This suggests that IDE and BE do in fact capture long-run substitution 

possibilities and FE short-run substitution possibilities as we predicted. 
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Table 1. Summary Statistics 2000-2010  

Variables Unit Provincial Mean 
Annual Provincial 

Growth Rate 
Mean† S.D. † Mean S.D. 

Steam Coal Price yuan/tonne 333 111 9% 3% 
Coking Coal Price yuan/tonne 547 130 13% 3% 
Briquette Price yuan/100 kg 32.9 9.62 8% 4% 
Coke Price yuan/tonne 937 182 13% 2% 
Coal Gas Price yuan/m3 1.27 0.29 2% 3% 
Gasoline Price yuan/tonne 5518 182 10% 1% 
Diesel Price yuan/tonne 4730 89.8 9% 1% 
Electricity Price yuan/kwh 0.60 0.09 6% 4% 
Steam Coal Quantity mil. tonnes 23.8 16.0 6% 4% 
Coking Coal Quantity 1000 tonnes 952 1108 18% 23% 
Briquette Quantity 1000 tonnes 226 309 42% 23% 
Coke Quantity mil. tonnes 6.9 8.0 13% 12% 
Coal Gas Quantity bil. m3 5.41 6.78 1% 23% 
Gasoline Quantity mil. tonnes 1.73 1.19 7% 5% 
Diesel Quantity mil. tonnes 3.31 2.33 14% 6% 
Electricity Quantity bil. kwh 72.5 52.2 12% 3% 
Capital†† bil. yuan  2425 1698 18% 3% 
Labor mil. persons 22.8 15.2 2% 1% 
Capital Compensation††† bil. yuan 410 341 17% 3% 
Labor Compensation††† bil. yuan 341 263 15% 2% 

Notes: †The provincial mean is the mean over time of the variable in a province. Then the 
mean and S.D. reported here are the mean and standard deviation of those values ††in 
constant 2000 yuan; †††the sum of the two compensation items is equal to GDP; mil. and bil. 
indicate million and billion.   
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Table 2. Fuel Cost Function Parameter Estimates  

Parameter 
Between Estimator Long-Run Difference 

Estimator Fixed Effects 

Coefficient Standard 
Error Coefficient Standard 

Error Coefficient Standard 
Error 

β0 or D(ft) -0.0090 0.0001*** -0.0099 0.0001***   

βC 0.2397 0.0004*** 0.2272 0.0027*** 0.2358 0.0015*** 

βG 0.1081 0.0029*** 0.1038 0.0047*** 0.1080 0.0010*** 

βX 0.4806 0.0005*** 0.4877 0.0023*** 0.4811 0.0011*** 

βD 0.1715 0.0029*** 0.1813 0.0050*** 0.1751 0.0013*** 

βCC 0.1810 0.0038*** 0.1667 0.0143*** 0.1802 0.0009*** 

βGC -0.0325 0.0199 -0.0280 0.0297 -0.0255 0.0049*** 

βGG -0.0237 0.1015 -0.0763 0.0751 0.0956 00127*** 

βXC -0.1147 0.0029*** -0.1007 0.0116*** -0.1134 0.0045*** 

βXG -0.0430 0.0120*** -0.0298 0.0088*** -0.0513 0.0058*** 

βXX 0.2490 0.0020*** 0.2369 0.0062 0.2491 0.0041*** 

βDC -0.0337 0.0190* -0.0380 0.0302 -0.0413 0.0011*** 

βDG 0.0992 0.0988 0.1340 0.0705* -0.0188 0.0076*** 

βDX -0.0912 0.0110* -0.1064 0.0127*** -0.0843 0.0061*** 

βDD 0.0258 0.0983 0.0105 0.0740 0.1444 0.024*** 

γC 0.0031 0.0003*** 0.0022 0.0006*** 0.0036 0.0003*** 

γG 0.0011 0.0029 -0.0032 0.0014** -0.0037 0.0012*** 

γX -0.0021 0.0003*** 0.0005 0.0004 -0.0015 0.0003*** 

γD -0.0021 0.0029 0.0004 0.3806 0.0001 0.0011 

Note: C, G, X, and D denote coal, gasoline, electricity, and diesel respectively. For BE first parameter is β0 , 

while for IDE it is D(ft) - the average rate of cost reduction. Significance levels: * 10%, ** 5%, *** 1%. 
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Table 3: Fuel Total Own and Cross-Price Elasticities 

Elasticity 
Between Estimator Long-Run Difference 

Estimator Fixed Effects 

Estimate Standard 
Errors Estimate Standard 

Errors Estimate Standard 
Errors 

     
  

!CC
T

 -0.076 0.015*** -0.193 0.068*** -0.014 0.003*** 

!CG
T

 -0.060 0.083 -0.090 0.131 -0.007 0.021 

!CX
T

 -0.141 0.012*** -0.285 0.054*** -0.029 0.020 

!CD
T

 -0.020 0.079 -0.109 0.135 -0.011 0.004** 

!GC
T

 -0.132 0.184 -0.196 0.291 -0.015 0.045 

!GG
T

 -1.143 0.938 -1.701 0.727** -0.013 0.118 

!GX
T

 -0.060 0.115 -0.129 0.088 -0.023 0.055 

!GD
T

 1.038 0.907 1.350 0.699* -0.010 0.070 

!XC
T

 -0.070 0.006*** -0.133 0.024*** -0.014 0.010 

!XG
T

 -0.013 0.025 -0.027 0.018 -0.005 0.012 

!XX
T

 -0.144 0.004*** -0.357 0.012*** -0.030 0.009*** 

!XD
T

 -0.069 0.024*** -0.160 0.027*** -0.011 0.013 

!DC
T

 -0.028 0.111 -0.136 0.168 -0.014 0.006** 

!DG
T

 0.654 0.578 0.772 0.383** -0.006 0.043 

!DX
T

 -0.194 0.068*** -0.429 0.072*** -0.030 0.035 

!DD
T

 -0.729 0.573 -0.884 0.408** -0.011 0.012 

Note: C, G, X, and D denote coal, gasoline, electricity and diesel respectively. First subscript is the quantity and 

second subscript is the price. Significance levels: * 10%, ** 5%, *** 1%.  
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Table 4: Interfuel Morishima and Shadow Elasticities of Interfuel Substitution 

Elasticity 
Between Estimator Long-Run Difference 

Estimator Fixed Effects 

Estimate Standard 
Errors Estimate Standard 

Errors Estimate Standard 
Errors 

Morishima 
    

 
μCG -0.056 0.186 -0.003 0.250 -0.0004 0.0421 
μGC 1.083 0.965 1.612 0.765** 0.0060 0.1258 
μCX 0.006 0.017 0.060 0.091 0.0001 0.0125 
μXC 0.003 0.012 0.071 0.062 0.0013 0.0235 
μCD 0.048 0.112 0.057 0.224 0.0001 0.0084 
μDC 0.709 0.573 0.775 0.489 0.0001 0.0153 
μGX 1.129 0.934 1.674 0.733** 0.0075 0.1299 
μXG 0.084 0.118 0.228 0.089** 0.0068 0.0571 
μGD 1.797 1.511 2.474 1.093** 0.0068 0.1546 
μDG 1.767 1.476 2.233 1.096** 0.0010 0.0820 
μXD -0.05 0.064 -0.073 0.072 0.0006 0.0380 
μDX 0.66 0.576 0.724 0.393* -0.0000 0.0001 

Shadow 
    

  
σCG 0.298 0.368 0.503 0.356 0.0016 0.0580 
σCX 0.004 0.013 0.068 0.071 0.0009 0.0197 
σCD 0.324 0.250 0.376 0.319 0.0001 0.0106 
σGX 0.276 0.190 0.481 0.167*** 0.0069 0.0686 
σGD 1.779 1.485 2.321 1.074** 0.0032 0.1062 
σXD 0.137 0.166 0.143 0.097 0.0004 0.0280 

Note: C, G, X, and D denote coal, gasoline, electricity and diesel respectively. For cross-price elasticities, the 

first subscript is the quantity and second subscript is the price. For Morishima elasticities the first subscript is 

the price that changes. Significance levels: * 10%, ** 5%, *** 1%. 
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Table 5: Factor Cost Function Parameter Estimates 

Parameter 
Between Estimator Long-Run Difference 

Estimator Fixed Effects 

Coefficient Standard 
Error Coefficient Standard 

Error Coefficient Standard 
Error 

β0 -0.5661 0.0053***     

βE 0.1268 0.0054*** 0.2179 0.0750*** 0.1235 0.0006*** 

βK 0.4763 0.0053*** 0.4171 0.0401*** 0.4686 0.0011*** 

βL 0.3968 0.0039*** 0.3650 0.0363*** 0.4080 0.0012*** 

βEE 0.0687 0.0340** 0.0174 0.0494 0.1008 0.0090*** 

βKE -0.0863 0.0295*** -0.0388 0.0218* -0.0608 0.0053*** 

βKK 0.0569 0.0309* 0.1140 0.0298*** 0.1480 0.0063*** 

βLE 0.0175 0.0126 0.0214 0.0358 -0.0399 0.0063*** 

βLK 0.0294 0.0133** -0.0752 0.0285*** -0.0871 0.0053*** 

βLL -0.0469 0.0101*** 0.0538 0.0367 0.1271 0.0067*** 

γE 0.0144 0.0093 -0.0012 0.0022 0.0082 0.0010*** 

γK -0.0039 0.0058 0.0138 0.0034*** 0.0092 0.0010*** 

γL -0.0105 0.0066 -0.0126 0.0035*** -0.0174 0.0007*** 

Note: E, K, and L denote capital, energy, and labor respectively. Significance levels: * 10%, ** 5%, *** 1%. 
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Table 6: Factor Own and Cross-Price Elasticities, Morishima, and Shadow Elasticities 

of Substitution 

Elasticity 
Between Estimator Long-Run Difference 

Estimator Fixed Effects 

Estimate Standard 
Errors Estimate Standard 

Errors Estimate Standard 
Errors 

Own & 
Cross-price  

    

  

ηEE -0.331 0.266 -0.702 0.235*** -0.060 0.073 

ηEK -0.204 0.232 0.239 0.100** -0.024 0.043 

ηEL 0.535 0.102*** 0.463 0.180*** 0.084 0.051* 

ηKE -0.054 0.062 0.125 0.079 -0.006 0.011 

ηKK -0.404 0.065*** -0.310 0.070*** -0.216 0.013*** 

ηKL 0.629 0.105*** 0.020 0.147 -0.298 0.043*** 

ηLE 0.171 0.031*** 0.277 0.126** 0.026 0.015* 

ηLK 0.550 0.032*** 0.211 0.104** 0.255 0.013*** 

ηLL -0.721 0.023*** -0.488 0.100*** -0.281 0.016*** 

Morishima 

    

  

μEK 0.277 0.324 0.827 0.268*** 0.054 0.081 

μKE 0.200 0.292 0.548 0.144*** 0.192 0.052*** 

μEL 0.502 0.282* 0.979 0.319*** 0.086 0.086 

μLE 1.256 0.112*** 0.951 0.252*** 0.365 0.063*** 

μKL 0.955 0.082*** 0.521 0.153*** 0.471 0.024*** 

μLK 1.350 0.118*** 0.508 0.209** -0.017 0.053 

Shadow 

    

  

σEK 0.217 0.295 0.644 0.174*** 0.163 0.055*** 

σEL 1.074 0.138*** 0.961 0.267*** 0.300 0.066*** 

σKL 1.134 0.090*** 0.515 0.159*** 0.244 0.036*** 

Note: E, K and L denote capital, energy and labor respectively. For Morishima elasticities the first subscript is 

the price that changes. Significance levels: * 10%, ** 5%, *** 1%.Significance levels: * 10%, ** 5%, *** 1%. 
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Table 7: Interfuel Elasticities of Substitution for China from the Existing Literature 

 

Coal-
Gasoline 

Coal-
Elec. 

Coal-
Diesel 

Gasoline
-Elec. 

Gasoline
-Diesel 

Elec.-
Diesel 

Oil-
Elec. 

Oil-
Coal 

Fisher-

Vanden et 

al. (2004) 

 

0.33 

    

0.65 1.06 

Hang & Tu 

(2007) 

 

0.20 

    

-0.33 0.53 

H. Ma et al. 

(2008) 0.28 1.17 0.06 0.67 0.16 0.69 0.68 0.17 

Serletis et 

al. (2011) 

 

0.11 

    

0.05 0.46 

Smyth et al. 

(2012) 

 

1.01 

    

1.09 0.90 

This study 

BE 0.30 0.00 0.32 0.28 1.78 0.14 0.21 0.31 

This study 

IDE 0.50 0.07 0.38 0.48 2.32 0.14 0.31 0.44 

This study 

FE 0.00 0.00 0.00 0.01 0.00 0.00   
Note: Figures in italics are averages for gasoline and diesel elasticities. Data for Smyth et al. are the Hicks 

elasticity of substitution. 

Table 8: Interfactor Elasticities of Substitution for China from the Existing Literature 

 

Energy-
Capital 

Energy-
Labor 

Capital-
Labor 

Fan et al. (2007) 1.44 -0.07 0.77 

Mallick (2007) 

  

0.55 

H. Ma et al. (2008) 0.80 0.61 0.34 

Smyth et al. (2011) 1.01 0.68 0.98 

This study BE 0.22 1.07 1.13 

This study IDE 0.64 0.96 0.52 

This study FE 0.16 0.30 0.24 
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Figure 1. Laspeyres Coal Price Index 2010 
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Figure 2. Log Distance from the Frontier 2010 
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Figure 3. Growth Rate of TFP 2000-2010 
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Figure 4. Own and Cross Price Elasticities 
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Figure 5. Shadow Elasticities of Substitution 
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