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Abstract

In this article we propose a new wind power forecasting model that does not

focus on providing the most precise forecasts, but minimizes the financial loss

of forecasting impreciseness. We show that the loss function is asymmetric and

therefore account for asymmetry during the estimation stage of our model. The

new model’s forecasts are compared to two state-of-the-Art models and we are

able to show that the new model can increase the financial profit for power

producers, power traders and/or network operators by a severe degree.
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Asymmetric Loss
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1. Introduction

Many electricity pools such as NASDAQ OMX Commodities (formerly Nord

Pool OMX Commodities), APX, EEX or UKPX feature rather similar rules on

energy trading: Traders (sellers as well as buyers) first place daily bids on their

respective desired quantities. At a certain point in time, these bids are auto-5

matically matched and contracted (clearing). Afterwards, the seller is obligated
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to deliver the contracted energy amount. Though there are slight differences in

the details on power trading from pool to pool, spot market mechanisms are

comparable. [1] provide more details on the respective rules of different spot

market trading places.10

As there is a time frame of up to 36 hours between bidding and contracting, both

market sides require forecasts of the energy that is to be traded. These fore-

casts provide only limited precision, so uncertainty exists: Energy is consumed

at that point in time at which it is produced, there are hardly any methods to

save the energy and consume it later. From the sellers’ perspective, this results15

in a loss from the forecasting impreciseness: If the seller produces and deliv-

ers less energy than contracted (i.e. the forecast imposed an overestimation),

the buyer needs to cover his demand from the intraday market. If there was

an underestimation (i.e. the actual amount of energy produced is larger than

forecasted), the producer needs to sell the non-contracted power at the intraday20

market.

In times of unexpectedly low power production (i.e. whenever the seller fails

to deliver the full contracted amount of energy), the producer has to refund

the fraction of contracted power that is not delivered, sometimes in addition to

a fine. Also, buying power from the intraday market and delivering it to the25

contract partner is not an option in most of these times because prices at the

intraday market are likely to be up, then. As a consequence, there is a real

economic loss to the seller. In times of unexpectedly high power production

however, the seller needs to sell the non-contracted fraction of produced power

at the intraday market. Prices there are likely to be low at these times, much30

lower than the contract price. So there is an imputed loss: If the forecast had

been more precise (i.e. if the seller had known the true amount of produced

power), that power could have been contracted and the profit for the seller

would have been larger.

The economic impact of these two-sided losses is asymmetric. [2] define a piece-35

wise linear loss function with weight γ ∈ [0, 1] for underestimation and 1−γ for

overestimation. They find an empirical value of γ = 0.73, stating that underes-
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timation is to be emphasized. [3] concur and find similar orders of magnitude for

their asymmetry measures. Also, [4] defines a comparable type of asymmetry

in his static model.40

Longer term forecasting (24 hours and beyond) is usually performed by phy-

sics/meteorology based models as discussed by, e.g., [5]. However, for short to

medium term forecasting, stochastic models have prevailed. Literature holds a

wide range of stochastic forecasting models. There are point forecasting models,

probabilistic forecasting models and even density forecasting models. [6] pro-45

vide an overview, also see the references therein. One of the most acknowledged

models is the Wind Power Prediction Tool (WPPT) by [7]. The basic idea is to

map numerical weather predictions (NWP), i.e. wind speed forecasts, to power

production. The model captures diurnal periodicity via a Fourier series, but

has its shortcomings because it is a linear model, does not utilize wind direction50

(which has proven to be an important predictor) as an explanatory variable and

does not take seasonality into account. Several approaches to generalize the

model have been proposed, for instance, [8] suggest the nonlinear generalized

WPPT model (GWPPT) model that exploits wind direction and also utilizes

both-sided censoring of the data range, since there is a pre-determined power55

interval known for each turbine. [9] provide a thorough comparative study on

GWPPT. [10] pursues a similar approach at modeling both-sided censored data.

However, all of these models focus on the most precise forecast, i.e. seek for

the lowest prediction error as measured by, e.g., RMSE or MAE (Root Mean

Squared Error, Mean Absolute Error, cf. 11). During the prediction stage,60

asymmetric losses are ignored. [12] account for asymmetry during wind speed

prediction, but not during the second stage, the wind power forecast. So far,

no research had been carried out trying to respect asymmetric losses during

wind power prediction directly. We take GWPPT and expand the estimation

by an asymmetric penalty term to acquire forecasts that are not necessarily the65

most precise ones per se. That is, we do not minimize forecasting errors, but we

maximize the economic profit that comes out of these forecasts. This leads to

an intentional systematic bias in the forecasts that represents the asymmetry.
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We are able to show that these maximum-profit-forecasts generate significantly

larger profits than their unbiased and consistent benchmark counterparts (GW-70

PPT).

The paper is structured as follows: Section 2 presents the proposed model. In

section 3 we discuss in-sample properties, run a sensitivity analysis and evalu-

ate the statistical features of the model. Section 4 sheds light on out-of-sample

results and measures the financial gain of our model. Section 5 concludes.75

2. Model Proposition

GWPPT forecasts power k periods ahead using the model specification

p∗t = m+a1·pt−k+a2·pt−(k+1)+b1·wt|t−k+b2·(wt|t−k)2+c1·vt|t−k+dc
1·cos

(
2πdt

144

)
+ dc

2 · cos
(

4πdt

144

)
+ ds

1 · sin
(

2πdt

144

)
+ ds

2 · sin
(

4πdt

144

)
+ εt, (1)

where p∗t is power produced at time t, wt|t−k is wind speed at time t given

at time t−k, vt is wind direction at time t, and dt is time of day for observation

t. The Fourier series captures diurnal periodicity, as data is provided at a

frequency of ten minutes (= 144 observations per day). p∗t is modeled as a80

both-sided censored feature, i.e.

pt =


l, p∗t ≤ l

p∗t , p∗t ∈ (l, u)

u, p∗t ≥ u.

(2)

l and u are the lower and upper censoring points, i.e. they determine the ex

ante known power range of the turbine investigated. The model’s parameters

are then estimated using the maximum likelihood (ML) based generalized Tobit

model by [13].85

[4] observes actual trading at Nord Pool OMX Commodities and, basically,
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constructs the loss function

Lt (PC , PI , PP , εt) =

(PC − PI) · εt, εt ≥ 0

PP · |εt| , εt < 0,
(3)

where PC , PI and PP denote contracted prices, intraday prices and a fine for

the case of contracted but not delivered energy. Note that this price information

is not time dependent, as this is a static model. For his model, [4] states the90

empirical values of PC = 100 e, PI = 16 e and PP = 20 e per MWh. In

fact, the values do vary and the provided actual values are merely averages over

time. Given a proper data source however, it is straight forward to model the

price information as time-dependent and thus, increase the model’s evaluation

performance. Still, the approximate values of [4] kept their validity up until95

today.

Two numerical examples show the asymmetry of losses: In the first case we

assume underestimation, i.e. more energy was produced than contracted. Say,

ε̂t = 3 MWh. Then, Lt = (100− 16) · ε̂t = 252 e. In the second case we assume

overestimation, i.e. ε̂t = −3 MWh, so Lt = 20·3 = 60 e. Thus, underestimation100

is far more costly than overestimation, providing that forecasts are supposed to

be biased upward. Fig. 1 shows the piecewise linear asymmetric loss function

of the model by [4].

The basic idea now is to integrate the asymmetric loss model as a penalty term

into the log-likelihood function that is used to estimate the parameters of the105

censored model in equation (1). Following [13], the result (GWPPT-Asymmetric

Loss, GWPPT-AL) is the function
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Fig. 1. Theoretical asymmetry of loss. Losses increase more steeply in the positive area of
errors, i.e. for underestimation forecasts.

logL = Il · log
(

Φ
(
l −Xβ
σ

))
+ Iu · log

(
Φ
(

Xβ − u
σ

))
+ (1− Il − Iu) ·

(
log
(
φ

(
p∗t −Xβ

σ

))
− log (σ)

)
−
(
p∗t −Xβ

σ
· (PC − PI) · Ipos + p∗t −Xβ

σ
· (−PP ) · Ineg

)
, (4)

where Φ and φ denote normal cumulative distribution function (CDF) and

normal probability density function (PDF), X is the design matrix of data, β is

the parameter vector, Il = 1 (p∗t ≤ l) , Iu = 1 (p∗t ≥ u) , Ipos = 1 (p∗t −Xβ ≥ 0)110

and Ineg = 1 (p∗t −Xβ < 0).

3. In-Sample Properties

We acquired a unique set of sensor data of four Fuhrländer FL MD 77 tur-

bines located in Germany. The turbines have a rated load of 1,500 kW and log
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Table 1
Descriptive statistics for Turbines A to D, time frame October 31, 2010 to November 06, 2012.

Wind speed (m/s) Power (kW) Wind direction (◦)
Turbine A

Min 0.4 -19.0 5.0
Median 4.9 123.0 205.0
Mean 5.1 217.8 184.4
Max 18.0 1532.0 353.0

Variance 5.89 74998.72 –
Turbine B

Min 0.4 -19.0 2.0
Median 5.2 124.0 218.0
Mean 5.3 231.3 194.2
Max 18.6 1493.0 355.0

Variance 6.46 85909.22 –
Turbine C

Min 0.4 -18.0 5.0
Median 5.2 127.0 213.0
Mean 5.3 230.6 192.5
Max 19.0 1542.0 355.0

Variance 6.22 85466.88 –
Turbine D

Min 0.4 -18.0 3.0
Median 5.1 124.0 199.0
Mean 5.2 225.0 183.4
Max 19.3 1515.0 357.0

Variance 5.96 82676.63 –

Table 2
Imputed yearly monetary gain (in-sample) for Turbines A to D, time frame October 31, 2010
to November 06, 2012.

Turbine A Turbine B Turbine C Turbine D
GWPPT-AL vs. GWPPT in e 18,287.04 e 35,168.53 e 34,812.83 e 29,871.09 e
GWPPT-AL vs. GWPPT in % 29.05 % 57.12 % 66.87 % 62.15 %
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Fig. 2. GWPPT and GWPPT-AL in a power curve (in-sample). Turbine A, time frame
October 31, 2010 to November 06, 2012.

Fig. 3. Sensitivity analysis: Holttinen’s default values, PP = 40 and PI = 32 in comparison.
Turbine A, time frame October 31, 2010 to November 06, 2012.
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their sensor data every ten minutes. Our time frame spans from October 31,115

2010 to November 06, 2012, so we have 102,817 observations per turbine. As we

are under strict non-disclosure agreement, we cannot reveal detailed information

about the four turbines and thus, we denote them “Turbine A” to “Turbine D”.

However, all of the four Turbines are located in typical rural surroundings with

some afforestation nearby. Table 1 provides descriptive statistics.120

Fig. 2 presents the empirical power curve of turbine A during the whole sample

period. The red and blue curves show GWPPT and GWPPT-AL estimators in

comparison. Both estimators respect the lower and upper bounds of the data

range. As it was expected, GWPPT-AL tends to overestimate, while GWPPT

is designed to follow the data’s conditional mean (8, go into details on that as-125

pect)1. The severity of asymmetry of GWPPT-AL depends on the parameters

PC , PI and PP .

The empirical asymmetry in this example amounts to γGWPPT-AL = 0.7369,

which means that 73.69 % of all actual values are below the curve. This is very

much in line with the value γH&G = 0.73 found by [2], although the definition130

of the asymmetric model by [4] is slightly more aggressive. A short sensitivity

analysis is performed to investigate this detail.

Doubling parameter PP (from 20 to 40, i.e. +100 %) puts more weight on un-

derestimation, because the fine for contracted but not delivered power is larger.

Thus, overestimation is not as “attractive” anymore. In fact, the asymmetry135

measure reduces from γGWPPT-AL = 0.7369 to γPP =40 = 0.7173 by 1.96 percent-

age points. Analogously, increasing parameter PI by 100 % (from 16 to 32) puts

more weight on underestimation, because power produced but not contracted

can be sold at higher intraday market prices, then. The asymmetry reduces to

γPI =32 = 0.6456 by 9.13 percentage points. Increasing the contract price PC has140

the exact reversed effect of increasing PI because positive forecasting errors are

evaluated by PC − PI , see equation (3). Fig. 3 presents the estimation curves

1Coefficients of determination: R2
WPPT = 0.9366, R2

GWPPT-AL = 0.9424, R2
GWPPT =

0.9524.
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in comparison.

Coming back to the default values (PC = 100 e/MWh, PI = 16 e/MWh,

PP = 20 e/MWh), the model fit of GWPPT-AL is not as good as that of GW-145

PPT: AICGWPPT = 894, 227, while AICGWPPT-AL = 1, 443, 932.2 This was

to be expected because, again, it is not the ultimate goal of the GWPPT-AL

model to obtain the best fit or the most precise unbiased forecast. Instead, the

model produces biased forecasts deliberately, so a poor fit is no surprise here.

We evaluate the respective models’ forecasting errors by Holttinen’s loss func-150

tion. That way, we can calculate the yearly monetary gain (or reduction in

losses that are due to weighted forecasting impreciseness) of using GWPPT-AL

instead of GWPPT per turbine. Table 2 shows these values for turbines A to

D. The table should be read as follows: For example for Turbine A, we assume

that forecasts are generated by using GWPPT. By switching to GWPPT-AL,155

the operator could decrease the monetary loss from forecasting errors (or: in-

crease profits) by 18,287.04 e per year. For Turbines B to D, gains are even

greater, because wind power data for Turbine A is rather tranquil, so GWPPT

produces rather precise forecasts. For Turbines B to D, the data is more noisy

(see variance in Table 1), forecasts are less precise, large deviations are more160

likely and so, asymmetry has an even greater impact. Taking it into account is

of greater benefit, then.

As these values are calculated at an in-sample environment, we now switch to

a more realistic out-of-sample analysis and investigate the models’ actual per-

formances.165

4. Out-Of-Sample Properties

Out-of-sample forecasts are calculated based on about half of the total sam-

ple set (50,000 observations per turbine) used for fitting the model. Then, 4,000

forecasts are calculated in a rolling window of fixed size for forecasting horizons

2Also, SBCGWPPT = 894, 276 and SBCGWPPT-AL = 1, 443, 979, RMSEGWPPT = 59.8
and RMSEGWPPT-AL = 71.4.
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of 10 minutes (1 step), 12 hours (72 steps), 24 hours (144 steps) and 36 hours170

(216 steps) for all turbines, respectively.

Fig. 4 presents the estimations for WPPT, GWPPT and GWPPT-AL, em-

bedded in the empirical power curve (actual values) for Turbine A in a one

step (10 minutes) ahead forecasting scenario. Similarly to the in-sample stage,

the GWPPT-AL curve shows a strong tendency of overestimation. WPPT and175

GWPPT fit well and are seemingly unbiased, but WPPT exceeds the Turbine’s

power range in the lower as well as in the upper limit.

Fig. 5 presents a detailed time series comparison of the models’ forecasting

errors for Turbine A, one step ahead. All models seem to predict the actual

values rather well. Fig. 6 aggregates these comparisons for Turbines A to D. As180

forecasting horizon expands (Figs. 7 to 9 show comparisons for the forecasting

horizons of 12, 24 and 36 hours, respectively), the curves begin to become more

volatile. Particularly for the 36 hours ahead forecasts, major fluctuations are

being observed. For such rather long forecasting horizons, meteorology based

forecasting models provide better performance than stochastic based models,185

as, e.g., [6] point out. These findings suggest to interpret all further results for

the longer forecasting horizons with caution.

Forecasting performance is usually evaluated via Root Mean Squared Error

(RMSE) and/or Mean Absolute Error (MAE). Also, these aggregated error

measures are usually standardized for better comparison, so we report stan-190

dardized RMSE and MAE (called sRMSE and sMAE, cf. 6) in Tables 3 and

4. The Tables provide sRMSE and sMAE for all Turbines and all forecasting

horizons, separated by calender weeks. Best (i.e. lowest) values are in bold.

Table 5 presents the Mean Bias Error as discussed by, e.g., [14]. It provides

information on the asymmetry of the forecasts. Furthermore, Table 6 shows195

results with respect to the Index of Agreement (IA), as developed by [15]. The

IA is a standardized measure of the degree of model prediction error and varies

between 0 and 1. A value of 1 indicates a perfect match, a value of 0 indicates
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no agreement at all:

d = 1−
∑

(p∗t − p̂t)2∑(∣∣p̂t − p∗
∣∣+
∣∣p∗t − p∗∣∣)2 , (5)

where p∗t denotes actual power values, p̂t denotes predicted power values and200

p∗ determines the mean of actual power values. The index can detect additive

and proportional differences in the observed and predicted means and variances;

however, it is mostly sensitive to extreme values due to the squared differences,

as [16] point out. Thus, IA is rather high for all turbines and models.

GWPPT-AL hardly produces the most precise forecasts: Very few exceptions205

aside, WPPT and GWPPT perform best, according to sRMSE and sMAE. In-

vestigating the aggregated target time frame (i.e. not separated by weeks),

GWPPT-AL occasionally outperforms WPPT. Fig. 10 shows sRMSE values

for Turbine A over forecasting horizons up to 216 steps (36 hours). In general,

WPPT and GWPPT outperform GWPPT-AL, the accuracy of GWPPT-AL210

forecasts is limited. The picture looks similar for Turbines B to D, as Fig. 11

reveals.

Table 7 reveals the asymmetry: It presents the percentages of forecasts that

are greater than their actual counterparts for all turbines, all models and all

forecasting horizons. WPPT and GWPPT forecasts seem empirically unbi-215

ased, while GWPPT-AL shows the desired behavior of being strongly biased.

GWPPT-AL occasionally exceeds the in-sample-bias of γ = 0.7369 in the short

term scenario (one step ahead). For the longer forecasting horizons, the asym-

metry of WPPT/GWPPT and GWPPT-AL levels out, as WPPT and GWPPT

become more biased, and GWPPT-AL becomes less biased. That may be due220

to increasing overall impreciseness of forecasts in the longer horizon scenarios.

After all, the goal of GWPPT-AL is not to produce precise forecasts, but to

maximize monetary profit. Therefore, Table 8 presents projected yearly mone-

tary gain of hypothetically switching a) from WPPT to GWPPT and b) from

GWPPT to GWPPT-AL. While these gains occasionally become negative in the225

most imprecise case of 216 steps ahead (36 hours), most of the times the increase
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in profit is substantial. Looking at the more reliable forecasting horizons 1 step

(10 minutes) and 72 steps (12 hours), GWPPT can increase profit over WPPT

by up to 14,000 e, just by being the more precise forecasting model. However,

GWPPT-AL can gain another up to 67,000 e over GWPPT per Turbine. Ad-230

ditionally, the gain of GWPPT-AL over GWPPT is by far greater than that of

GWPPT over WPPT. As GWPPT provides more monetary profit than WPPT

and GWPPT-AL more than GWPPT, the comparison WPPT vs. GWPPT-AL

is omitted here due to predominant redundancy.

Finally, to check whether the financial difference between the pairwise Holttinen-235

weighted aggregated forecasting errors is statistically significant, we assume the

loss functions to be prediction error evaluation functions in the way [17] describe

them. With that we are able to directly use the Diebold-Mariano test (DM test)

to analyze the significance of financial differences as reported in Table 8. All

positive gains are significant, at least at a level of 5%. As forecasts become240

somewhat unstable for the longer horizons, the statistical significance declines

here in some cases, particularly for the forecasts 36 hours (216 steps) ahead.

However, at least for horizons of up to 24 hours, monetary profits are significant

and reliable.
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2012.

16



Dec 12 Dec 17 Dec 22 Dec 27 Jan 01

−
10

00
−

50
0

0
50

0

Turbine A

Time

E
rr

or
s 

(k
W

)

WPPT
GWPPT
GWPPT−AL

Dec 12 Dec 17 Dec 22 Dec 27 Jan 01 Jan 06

−
10

00
−

50
0

0
50

0

Turbine B

Time

E
rr

or
s 

(k
W

)

WPPT
GWPPT
GWPPT−AL

Dec 12 Dec 17 Dec 22 Dec 27 Jan 01 Jan 06

−
50

0
0

50
0

Turbine C

Time

E
rr

or
s 

(k
W

)

WPPT
GWPPT
GWPPT−AL

Dec 12 Dec 17 Dec 22 Dec 27 Jan 01 Jan 06

−
10

00
−

50
0

0
50

0

Turbine D

Time

E
rr

or
s 

(k
W

)

WPPT
GWPPT
GWPPT−AL

Fig. 7. Errors of WPPT, GWPPT and GWPPT-AL forecasts, time line (out-of-sample, 72
steps [12 hours] ahead). Turbines A to D, time frame October 31, 2010 to November 06, 2012.
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Fig. 8. Errors of WPPT, GWPPT and GWPPT-AL forecasts, time line (out-of-sample, 144
steps [24 hours] ahead). Turbines A to D, time frame October 31, 2010 to November 06, 2012.
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Fig. 9. Errors of WPPT, GWPPT and GWPPT-AL forecasts, time line (out-of-sample, 216
steps [36 hours] ahead). Turbines A to D, time frame October 31, 2010 to November 06, 2012.
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5. Conclusion245

This article presents a new forecasting model that does not focus on return-

ing the most precise predictions, but returns forecasts that aim at minimizing

the loss due to forecasting impreciseness. It takes the asymmetry of the loss

function into account during the estimation stage and as such, it is deliberately

biased. We show that these forecasts cannot compete with sophisticated fore-250

casting models in terms of precision measures, but outperform these models

tremendously with respect to their financial impact. Using the new forecasts

instead of those generated by a state-of-the-Art model can lead to a statisti-

cally significant projected yearly monetary gain of up to 67,000 e per Turbine.

Therefore, the proposed model can be very valuable to power producers, utilities255

and traders.
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Table 6
Index of Agreement (IA), time frame 12/08/2011 to 01/04/2012, all horizons and all turbines.
A value of 1 denotes a perfect match between actual values and predicted values, a value of 0
denotes no agreement at all.

WPPT GWPPT GWPPT-AL
1 Step
Turbine A 0.9923 0.9958 0.9959
Turbine B 0.9927 0.9962 0.9950
Turbine C 0.9926 0.9963 0.9950
Turbine D 0.9908 0.9937 0.9905
72 Steps
Turbine A 0.9686 0.9781 0.9769
Turbine B 0.9698 0.9790 0.9812
Turbine C 0.9665 0.9755 0.9758
Turbine D 0.9601 0.9683 0.9692
144 Steps
Turbine A 0.9680 0.9792 0.9785
Turbine B 0.9679 0.9791 0.9809
Turbine C 0.9626 0.9737 0.9738
Turbine D 0.9577 0.9681 0.9685
216 Steps
Turbine A 0.9652 0.9785 0.9768
Turbine B 0.9658 0.9787 0.9795
Turbine C 0.9600 0.9723 0.9718
Turbine D 0.9501 0.9625 0.9634
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Table 7
Asymmetry: Percentage of forecasted values that are greater than the respective actual values,
time frame 12/08/2011 to 01/04/2012, all horizons and all turbines.

WPPT GWPPT GWPPT-AL
1 Step
Turbine A 49.50% 50.33% 69.76%
Turbine B 53.20% 57.29% 79.51%
Turbine C 53.65% 54.25% 76.99%
Turbine D 53.90% 56.90% 80.87%
72 Steps
Turbine A 55.26% 56.25% 71.02%
Turbine B 57.86% 61.09% 71.07%
Turbine C 57.09% 58.01% 67.33%
Turbine D 57.32% 59.51% 70.03%
144 Steps
Turbine A 58.39% 60.62% 71.34%
Turbine B 56.58% 59.43% 67.08%
Turbine C 54.22% 55.37% 63.92%
Turbine D 55.18% 56.81% 66.23%
216 Steps
Turbine A 54.85% 55.38% 69.92%
Turbine B 58.76% 61.88% 68.62%
Turbine C 55.49% 56.04% 64.50%
Turbine D 56.94% 57.41% 67.01%
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Table 8
Projected yearly monetary gain, time frame 12/08/2011 to 01/04/2012, all horizons and all
turbines. “***”, “**” and “*” denote significant at levels of 1%, 5% and 10%, according to
Diebold-Mariano test.

GWPPT vs. WPPT GWPPT-AL vs. GWPPT
1 Step
Turbine A ***10,804.01 e (5.35%) ***4,102.46 e (1.65%)
Turbine B ***12,821.08 e (6.33%) ***38,987.43 e (17.72%)
Turbine C ***14,130.67 e (6.64%) ***28,477.42 e (12.13%)
Turbine D ***14,396.68 e (6.92%) ***53,903.75 e (23.77%)
72 Steps
Turbine A ***7,422.73 e (1.05%) ***62,522.08 e (8.76%)
Turbine B ***7,072.69 e (1.00%) ***67,264.95 e (9.44%)
Turbine C ***6,234.42 e (0.86%) ***56,001.37 e (7.67%)
Turbine D ***12,267.44 e (1.69%) ***63,915.36 e (8.63%)
144 Steps
Turbine A ***6,494.78 e (0.78%) ***20,225.49 e (2.40%)
Turbine B ***4,898.39 e (0.58%) ***37,822.43 e (4.44%)
Turbine C ***2,678.00 e (0.30%) ***7,071.30 e (0.79%)
Turbine D ***10,228.80 e (1.17%) **1,162.76 e (0.12%)
216 Steps
Turbine A ***1,457.03 e (0.16%) ***60,521.77 e (6.63%)
Turbine B **-659.83 e (-0.07%) **47,570.96 e (4.92%)
Turbine C *-2,829.87 e (-0.27%) -23,784.71 e (-2.30%)
Turbine D 2,726.58 e (0.27%) -16,258.28 e (-1.63%)
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Fig. 10. sRMSE for WPPT, GWPPT and GWPPT-AL for several forecasting horizons.
Turbine A, time frame December 08, 2011 to Janury 04, 2012.
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Fig. 11. sRMSE for WPPT, GWPPT and GWPPT-AL for several forecasting horizons.
Turbines A to D, time frame December 08, 2011 to Janury 04, 2012.
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