Efficient and Equitable Scenarios of Climate Change

International Energy Workshop 3-7 June 2015, Abu Dhabi

S. Kypreos

PSI-5303, Switzerland

Outline

- 1. Questions and Methodology
- 2. Basic Scenario for Efficiency (2 °C) and its Variations
- 3. Energy, Power and Technology for the basic Scenario
- 4. Equity and Fairness
- 5. Sensitivities
- 6. Overall conclusions

Overarching Questions and Procedure

Overarching Questions

a) what is the least cost for the 2 °C and its regional distribution?

b) what is the extra burden for the industrialized world for a global protocol in 2020?

• Approach

- a) The maximization of the global welfare under a cumulative constraint for emissions Quotas between 2020-2120 defines Economic and Environmental efficiency
- a) We apply different emission Quotas for different ΔT targets and associated probabilities
- b) Then, equity and fairness are investigated with different Burden Sharing rules like:
 - Resource sharing (equal emissions per capita after 2050)
 - Efforts sharing (equal relative regional energy costs)
 - Full compensation of energy costs for India and RoW
 - All above + Considering benefits of mitigation by simulating damages
 - Sensitivity

The Model: MERGE-ETL (PSI's Version)

Source; Adriana Marcucci; Input in Red; Output in Black

MERGE-ETL; The Reference Energy Flows & System

PEC=Primary energy carrier SEC=Secondary energy carrier (r)=remaining (CCS)=technology with and without carbon capture and storage

MERGE-ETL; Regional disaggregation

With these changes the new regional definition (see Figure 3.13) includes 10 regions: European Union (EUP); Switzerland (SWI); Russia (RUS); Middle East (MEA); India (IND); China (CHI); Japan (JPN); Canada, Australia and New Zealand (CANZ), United States (USA); and the Rest of the World (ROW).

FIGURE 3.13: New regions definition

Different international statistics are used for the calibration years of 2000, 2005 and 2010

Remaining CEQ in GtC for after 2020 per scenario; Minimum number of scenarios is analyzed:

Scenario name	Stringency: 66 % probability	Stringency: 50 % probability	Timing: Protocol in 2020	Timing after 2020 BECCS & DAC All with CCS storage		
BAU	Maximization of global utility					
СВА	Cost/Benefit with High Willingness to Pay					
2° C 66%	273 GtCe (1000 GtCO2e)		\checkmark	2°C66% DAC (1000 GtCO2e)		
2 °C 50%		355 GtCe <mark>& POA</mark> (1300 GtCO2e)	\checkmark	2°C50% DAC (1300 GtCO2e)		
2.5 ° C 66%	464GtC (1700 GtCO2e)		\checkmark	-		
2.5 °C 50%		560 GtC (2000 GtCO2e)	\checkmark	-		

PAUL SCHERRER INSTITUT

Source of RCEQ: Friedlingstein et al. 2014

BAU with basic socio-economic assumptions of IIASA's B2 and its energy intensity

Electricity Generation in TkWh/yr

But BAU is a cost optimal solution dominated by coal and produces a significant amount of GHG emission.

CO2eq Emissions per case in GtCe/yr

GDP losses relative to BaU (%)

PAUL SCHERRER INSTITUT

Marginal cost \$/t C

Primary by Fuel & Power Generation (2100)

Emission per capita and year by region from grandfathering to equalitarian; Case 2 °C, with 50% chances

Balance of Permits (GtC/yr) Imports (negative) and Exports (Positive)

Transfers across regions for permit trade in billion US \$; Equalitarian

Regional GDP losses relative to BAU in % for the efficient and the equalitarian case; 2 °C with 50% probability

Capital transfers due to trade of permits in billion \$/yr; Equal relative energy costs; Case 2 °C with 50%

Permits trade in GtC/yr; Full compensation of the EC for India & RoW; Case 2 °C 50%

Transfers due to trade of permits in billion \$/yr for RoW and India; Case 2 °C with 50% probability

Cumulative GDP losses for different BS rules net of permits-trade in %;

Climate Damages and net-benefits are simulated and defined as percentage of GDP-BAU

$$ELF_{rt} \cong \left[1 - \left(\Delta T_{t} / \Delta T_{catt}\right)^{2.5}\right]^{hst} \text{ Economic Loss factor}$$
$$NMD_{rt} = \left(1 - ELF_{rt}\right) \cdot C_{rt}$$
$$MD_{rt} = param_{rt} \cdot \left(\frac{\Delta T_{t}}{2.5}\right) \cdot GDP_{rt}$$

Cumulative GDP losses for different BS rules net of permits-trade and mitigation benefit in %;

Overall Conclusions

- Key technologies for power generation are wind, solar PV and BECCS, while production for synfuel and H2 is based on coal and gas with CCS
- The environmental goal of 2 °C is feasible but practically impossible to be obtained as the estimated marginal cost are around 2000 6000 \$/t C at the end of the century
- The CBA case with HWP and 1% utility discount rates gives C-prices below 150 \$t/C but it never satisfies the 2 °C target
- The scenarios assume already optimistic technology development and availability; but much more must be done in terms of technology R&D&D;
- The 2 °C with 50% probability gives 2.9% GDP losses that could be reduced by 2 p.p. if the benefits of improved global climate and reduced LAP are considered;

Perhaps Direct Air Capture & Removal (DAC) should be included in the portfolio of options to get lower marginal costs of carbon control

(Keith D., Climate strategy with CO2 capture from the air; Climatic Change (2006) 74: 17–45)

BS Arrangements must be flexible e.g., short in duration, re-evaluated and re-defined with time

- The equalitarian rule (and probably the Brazilian one) is not in favor of all LDCs;
- Attractive BS rules would be either equal EC losses or full compensation for LDCs.
- Although the extra efforts undertaken by the industrialized world could be promising there are always regions with very disatisfactory results as e.g, the Middle-East.
- SOME SENSITIVITIES:

a)	2° C with 66%	instead of 50% probability	means	0.6 pp more losses
b)	2.5 °C	instead of 2°C	means	0.6 pp cost reduction
c)	Extra cost whe	n paying for India and RoW	means	+1 pp for OECD & CHINA

d) Regional GDP losses are higher than the global average (+7% for Middle-East)

Until now only BECCS are considered (about 190 EJ/yr no DAC) But now: BECCS + DAC ("unlimited" global storage capacity 2000 Gt CO2)

DAC technology Data (APS, 2011) (rather conservative) : Annualized capital cost plus O&M \$500/tCO2-removed and 8.1 GJ /tCO2 is used as fuel input (e.g., gas or oil) and 0.5 MWh/tCO2 is needed as electricity input

APS, June, 2011: Direct Air Capture of CO2 with Chemicals. A Technology Assessment for the APS Panel on Public Affairs

GHGs emissions in GtCe/yr with Direct Atmospheric Capture (DAC)

Marginal cost \$/t C

Direct Air Capture (DAC) in Gt C/yr

GDP losses relative to BaU (%)

Primary by Fuel w/o and with DAC (2100)

