

CNRS UMR 7235 – Université de Paris Ouest Nanterre La Défense

Robust technological and emission trajectories for long-term stabilization targets with an energyenvironment model

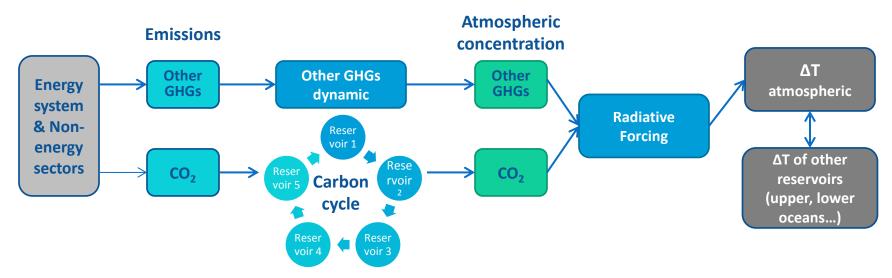
Nicolas Claire Tchung-Ming Stéphane (IFPEN) Bahn Olivier (HEC Montréal) Delage Erick (HEC Montréal)

CONTEXT

- Widespread use of energy-economy-environment system models
 - Energy security and climate change: insights regarding the cost and benefit of policy objective and system effects
 - These models grow bigger and bigger
 - Sectoral and geographical coverages, coupling with other models, Higher level of details/complexity...
 - And are subject to criticisms (too complex, validation issue, hidden values issue)
 - The main criticism: uncertainty handling (Pindyck, 2013)
- Uncertainty treatment
 - Uncertainty not considered because of model size & complexity
 - A polymorphous uncertainty:
 - growth, technical parameters, backstop technology, climate system...
- Methods
 - Exogenous ways
 - Extensive scenario analysis (Babaee et al, 2014)
 - Sensitivity analysis (Hope, 2006)
 - Monte Carlo analysis (MIT 2011)
 - Endogenous ways
 - Stochastic programming (requires density functions)
 - Robust optimization : set-based uncertainty models, large cardinalities allowed (distributional robustness) (Babonneau et al, 2011)

Climate models in IAMs

 Small Climate models deriving from Global Circulation Models and/or Earth System Models of Intermediate Complexity (Van Vuuren et al, 2009)



- Lots of approximations / calibration methods which can impact the model results
- Idea: assess the robustness of the model to climate parameters uncertainty and understand which parameters or combination of parameters are the most sensitive
- Problem: a classic sensitivity study would take too long (with 10 parameters to study and only 2 values for each parameters, more than 1000 runs)
- Hence the use of robust optimization

ROBUST OPTIMIZATION: what is it?

- Principle
 - Immunize solutions of mathematical programs to adverse realizations of uncertain coefficients
- Initial approach
 - Soyster (1973): pessimistic « worst-case » solution
- Many improvements since the end of 90s
 - New formalisms (quadratic...) : El-Gahoui et al (1998); Ben-Tal and Nemirovski (2002)
 - Lots of efforts on linear formulations: Bertsimas and Sim (2004) generalization of Soyster's approach
 - Ongoing extensions to general constraints (Ben-Tal et al, 2012)
 - Very well established results for LP

ROBUST OPTIMIZATION: what is it?

Nominal LP problem

• (P) $\begin{cases} \min C^T x \\ s.t. Ax \le b \\ x \in \mathbb{R}^n_+, b \in \mathbb{R}^m \end{cases}$

- Some parameters are uncertain, we assume they deviate in the "uncertainty set"
 - $a_{i,j} \in [\overline{a_{i,j}} \widehat{a_{i,j}}, \overline{a_{i,j}} + \widehat{a_{i,j}}],$ $a_{i,j} = \overline{a_{i,j}} + z_{i,j} \widehat{a_{i,j}}, z_{i,j} \in [-1, 1]$
 - The "worst" case is unlikely hence: $\sum_{j} |z_{i,j}| \leq \Gamma_i$, Γ : uncertainty budget

• (P_{rob})
$$\begin{cases} \min C^T x \\ s.t. \\ \sum_j \overline{a_{i,j}} x_j + \max_{\substack{z_{i,j} \\ z_{i,j} \\ z_{i,j} \\ \in [-1,1] \\ \sum_j |z_{i,j}| \le \Gamma_i \\ x \in \mathbb{R}^n_+, b \in \mathbb{R}^m \end{cases}$$

Primal deviation problem

• (P₂)
$$\begin{cases} \max_{z_{i,j}} \sum_{j \in i,j} \widehat{a_{i,j}} x_j \\ z_{i,j} \in [0,1] \quad (\mu) \\ \sum_j z_{i,j} \leq \Gamma_i(\lambda) \\ x \in \mathbb{R}^n_+, b \in \mathbb{R}^m \end{cases}$$

Dual deviation problem

• (D₂) $\begin{cases} \min \Gamma_i \lambda + \sum_j \mu_{i,j} \\ s.t. \ \lambda + \mu_{i,j} \ge \widehat{a_{i,j}} x_j \\ \mu_{i,j} \in \mathbb{R}_+, \lambda \in \mathbb{R}_+ \end{cases}$

Using strong duality arguments

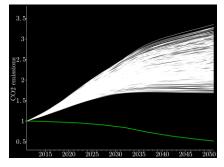
$$(\mathsf{P}_{\mathsf{rob}}) \begin{cases} \min C^T x \\ s.t. \\ \sum_j \overline{a_{i,j}} x_j + \Gamma_i \lambda + \sum_j \mu_{i,j} \le b_i \\ \lambda + \mu_{i,j} \ge \widehat{a_{i,j}} x_j \\ \mu_{i,j} \in \mathbb{R}_+, \lambda \in \mathbb{R}_+ \\ x \in \mathbb{R}^n_+, b \in \mathbb{R}^m \end{cases}$$

Why using this methodology?

- Input-based reasons
 - Tackling the computational burdens of large bottom-up IAMs

- Being able to consider a lot of parameters at the same time
- Other potential applications
 - Cost uncertainty, technical parameter uncertainty, demand uncertainty

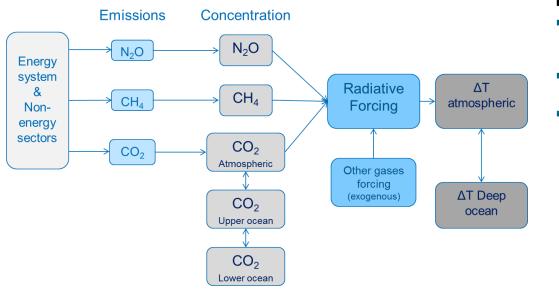
- Output based reasons
 - Proposing alternative model of uncertainty within IAMS



 Obtaining trajectories robust to most parameter realizations

Application with the TIAM-World model

• The TIMES climate module is adapted from Nordhaus & Boyer (1999) (Loulou et al, 2010)



Parameters

- Carbon cycle: φ_{au}, φ_{ua}, φ_{lu}, φ_{ul} annual CO2 flow coefficients between the three reservoirs
- Radiative forcing: γ is the radiative forcing sensitivity to a doubling of the atmospheric
- Temperature
 - **σ**₁ : speed of adjustment parameter for atmospheric temperature.
 - σ₂: ratio of the thermal capacity of the deep oceans to the transfer rate from shallow to deep ocean
 - σ₃: transfer rate (per year) from the upper level of the ocean to the deep ocean
 - CS: a feedback parameter, representing the equilibrium impact of CO₂ concentration doubling on climate.
- 9 parameters calibrated with more complex climate models (e.g. MAGICC)

Experimental setting

- Climate constraint: 3°C over the whole 2010-2200 horizon (no overshoot)
- 2 sets of climate parameter deviations
- Set 1: 10% set
 - Simple: Parameters can deviate of 10% of their nominal value

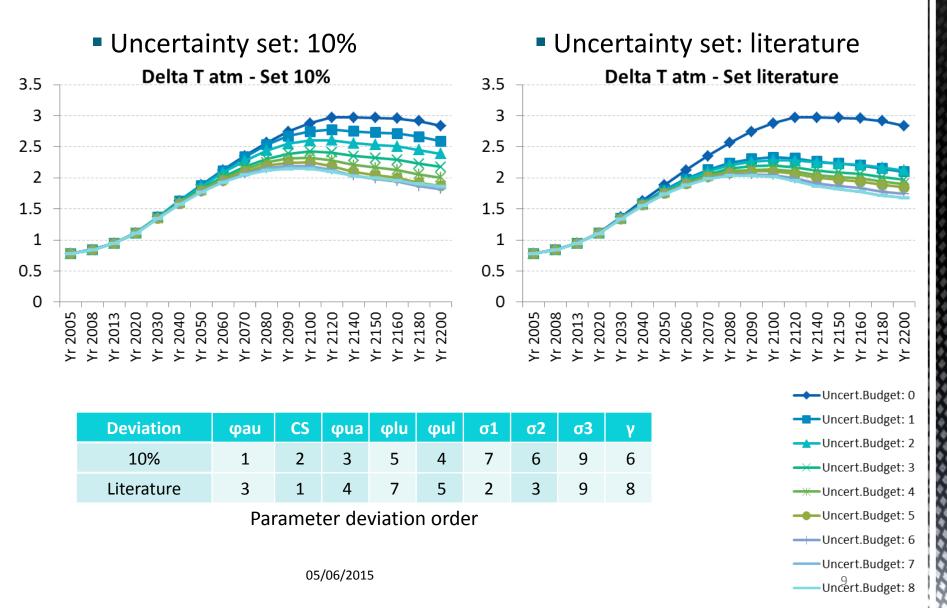
•
$$a_{i,j} \in \left[\overline{a_{i,j}} - 0.1\overline{a_{i,j}}, \overline{a_{i,j}} + 0.1\overline{a_{i,j}}\right]$$

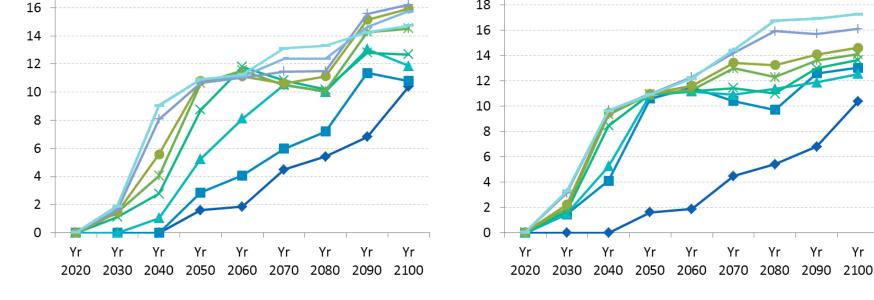
Set 2: literature set

- Use deviation values found in literature
- Difficulty to find homogenous data for all parameters

Parameters	Value	Deviation	
		10%	Literature
ϕ_{au}	0.046	10%	3.5%
ϕ_{ua}	0.0453	10%	3.5%
ϕ_{lu}	0.00053	10%	3.5%
ϕ_{ul}	0.0146	10%	3.5%
σ_1	0.024	10%	13%
σ ₂	0.44	10%	10%
σ_3	0.002	10%	10%
CS	2.9	10%	50%
γ	3.71	10%	21%

Most sensitive parameters





20

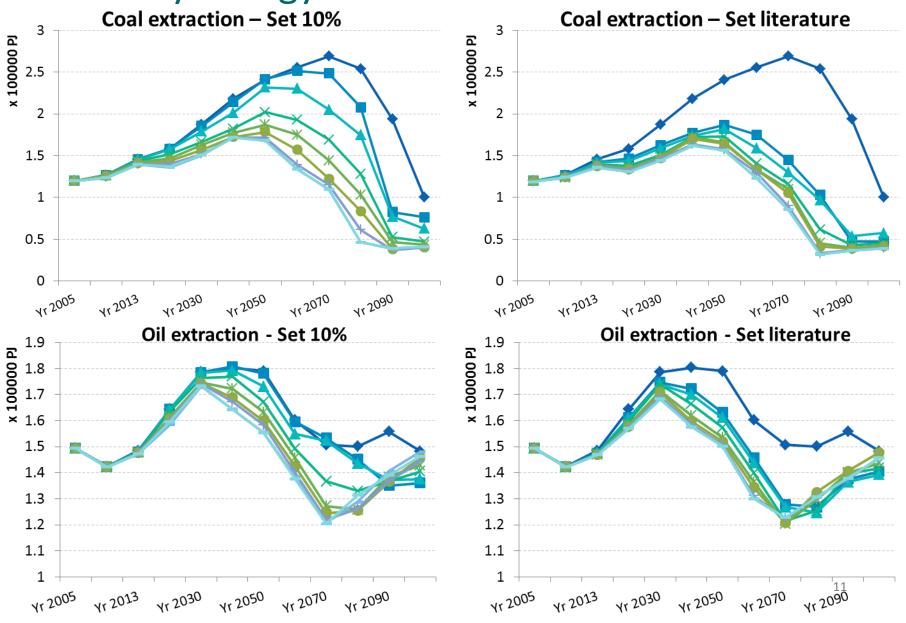
ъ 18 **CO2** Captured – Set literature

CO2 Captured – Set 10%

18

ដ

Primary energy



Conclusion

- Use of robust optimization for large bottom-up model with nonlinear constraint
- Need to be careful with Small Climate Model results given the parameter diversity across models
- Adapt calibration? Generalize sensitivity study?
- Next step: going further with the robust optimization methodology. Trying to understand how we can interpret the robust trajectories (hedging, attitude towards risk...).

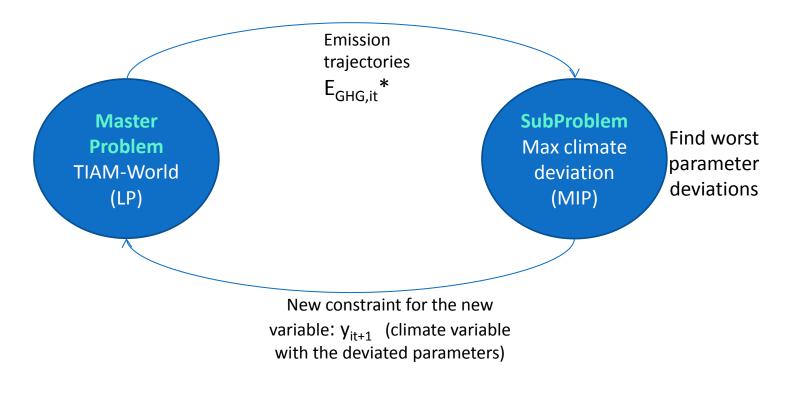
CNRS UMR 7235 – Université de Paris Ouest Nanterre La Défense

Robust technological and emission trajectories for long-term stabilization targets with an energyenvironment model

Thank you for your attention

Application with the TIAM-World model

- Implementation obstacle
 - The climate module is not linear in the parameters:
 - We linearized it using binary variables, the problem becomes a MIP
 - Implementation of a column and constraint generation algorithm using a MIP oracle



Times climate module

$$\begin{split} M_{atm}(y) &= E(y) + (1 - \varphi_{atm-up}) M_{atm}(y-1) + \varphi_{up-atm} M_{up}(y-1) \\ M_{up}(y) &= (1 - \varphi_{up-atm} - \varphi_{up-lo}) M_{up}(y-1) + \varphi_{atm-up} M_{atm}(y-1) + \varphi_{lo-up} M_{lo}(y-1) \\ M_{lo}(y) &= (1 - \varphi_{lo-up}) M_{lo}(y-1) + \varphi_{up-lo} M_{up}(y-1) \end{split}$$

$$\begin{split} \boldsymbol{M}_{t} &= \mathbf{P} \cdot \boldsymbol{M}_{t-1} + \boldsymbol{E}_{t}, \\ \mathbf{P} &= \begin{pmatrix} 1 - \varphi_{a-u} & \varphi_{u-a} & 0 \\ \varphi_{a-u} & 1 - \varphi_{u-a} - \varphi_{u-l} & \varphi_{l-u} \\ 0 & \varphi_{u-l} & 1 - \varphi_{l-u} \end{pmatrix}, \qquad \qquad \boldsymbol{F}_{t} &= \boldsymbol{\gamma} \left[f_{1} + f_{2} \left(\boldsymbol{m}^{T} \mathbf{P}^{t} \boldsymbol{M}_{0} + \sum_{\tau=1}^{t} \boldsymbol{m}^{T} \mathbf{P}^{t-\tau} \boldsymbol{E}_{\tau}, \right) \right] \\ \boldsymbol{M}_{t} &= \mathbf{P}^{t} \cdot \boldsymbol{M}_{0} + \sum_{\tau=1}^{t} \mathbf{P}^{t-\tau} \boldsymbol{E}_{\tau}, \\ \boldsymbol{M}_{t}^{a} &= \boldsymbol{m}^{T} \boldsymbol{M}_{t} \end{split}$$

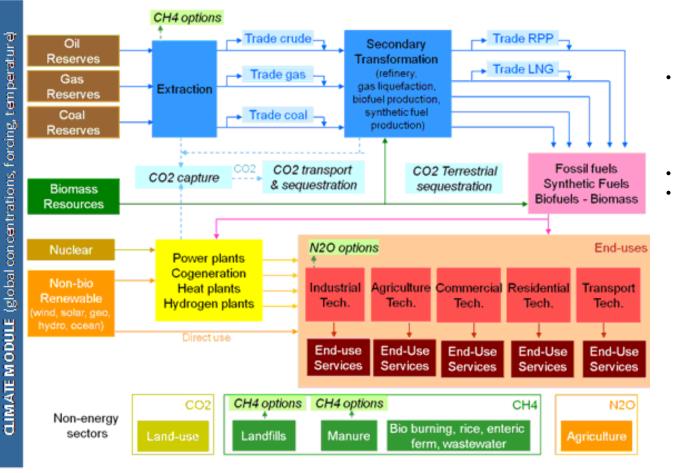
$$\Delta T_{t} = S\Delta T_{t-1} + sF_{t},$$

$$S = \begin{pmatrix} 1 - \sigma_{1} \left(\lambda + \sigma_{2}\right) & \sigma_{1}\sigma_{2} \\ \sigma_{3} & 1 - \sigma_{3} \end{pmatrix}, s = \begin{pmatrix} \sigma_{1} \\ 0 \end{pmatrix}$$

$$\Delta T_{t} = S^{t}\Delta T_{0} + \sum_{\tau=1}^{t} S^{t-\tau} sF_{\tau}$$

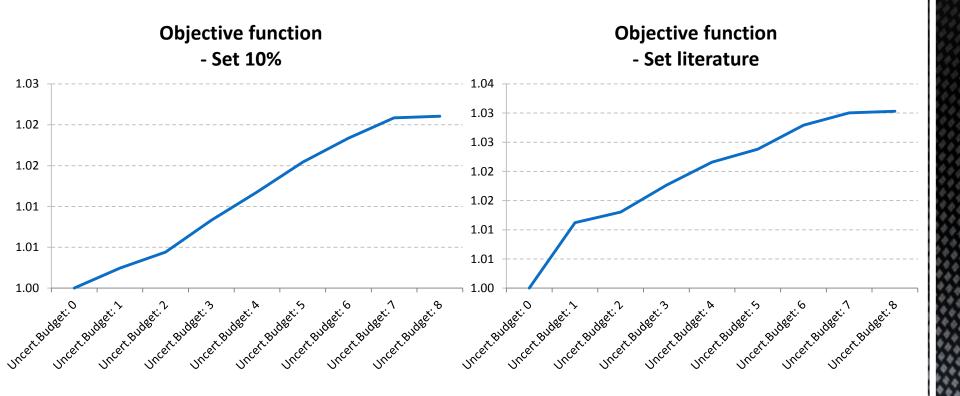
05/06/2015

The TIAM Model



- A multi-regional and intertemporal partial equilibrium model of the entire energy/emission system of the World
- 16 Regions
- Driven by a set of 42 demands for energy services in all sectors

Cost of robustness



Contributions

- Use of a recent technique developed in the operations research field: robust optimization. Application to tackle the climate module parameter uncertainty.
- This technique allows to derive robust trajectories
- And to highlight the most sensitive parameters or parameter combinations.