IAEA's Tool for Energy Supply System Assessment
MESSAGE Modelling Framework

IRENA-ECREEE Workshop on Energy Planning
10-12 December 2012, Abidjan, Cote D’Ivoire

Mario TOT
Planning and Economic Studies Section
Department of Nuclear Energy
IAEA's Energy Systems Assessment Tools

- **MAED**
 - Energy Demand Analysis

- **MESSAGE**
 - Energy Supply Optimisation

- **FINPLAN**
 - Financial Analysis of Energy Plans

- **SIMPACTS**
 - Environmental Impacts

- **ISED**
 - Sustainability Indicators

- **WASP**
 - Power Generation Expansion

- **EBS**
 - Energy Statistics and Balances
MESSAGE

Model for Energy Supply System Alternatives and their General Environmental impacts

• Software designed for setting up optimisation models of energy supply systems to assess capacity expansion and energy production policies
Short History of MESSAGE

• Originally developed at IIASA
 • Initiated under Wolfgang Hafele and Alan Manne (in 1970s)
• MESSAGE at IAEA
 • Added graphical user interface
 • Documentation – User manual
 • Capacity building
 • eLearning application
 • Online user support (TSES – Tele Support Expert Service)
 • Further development and improvements
What MESSAGE can do?

- MESSAGE calculates least-cost energy supply system
- Can be used to assess, develop and design different regional and national energy strategies, policies and action plans
- MESSAGE study results are used to support decision and policy making processes
What MESSAGE cannot do?

- Cannot predict future
- Cannot make decisions
Energy Chain / Energy System

Resources
- Fossil fuels
- Water
- Uranium
- Geothermal

Primary
- Petrol
- Electricity
- Washed coal
- Heat

Secondary
- Gas-pipeline
- Electric grid
- District heating
- Coal train

Final
- Lighting
- Refrigeration
- Heating
- Air condition

Useful
Elements of an Energy System

- Resources
- Energy forms
- Technologies
- Demands
Reference Energy System
Energy Demand

- Demand data exogenously given
- Seasonal variations taken into account
- Demand side management measures can be modelled
Case Study Parameters

- Planning horizon and time steps
- Seasonal division
- Constraints
- Discount rate
Optimisation

• Criteria
 • Minimisation of the total discounted energy system cost, subject to the constraints representing demands, resource availability, capacity limits, penalties, etc.

• Mathematical techniques:
 • Linear programming
 • Mixed-integer programming

• *Finding single optimum solution is not the purpose of the model development and use*
MESSAGE Outputs

- Capacity expansion
- Production plan
- Resource use
- Primary energy mix
- Energy imports/exports
- Investments and operational Costs
- Emission and Waste
- etc.
Case Study Design

1. Scope of the Study
 - Identify **policy issues** and **questions** to be addressed in the study

2. System configuration
 - Identify natural resources, energy forms, and technologies **that are used** and those **that may be used** in the country (Reference Energy System)

3. Scenario development and representation
 - Identify sets of assumptions and prepare the corresponding scenarios to be analysed
1. Scope of the Study
Policy Issues to be Analysed

- Accessibility to modern energy services
- Availability of energy
- Affordability of energy
- Resource management
- Energy trade
- Energy security
- Local and regional development
- Regional and international commitments
- Environmental regulations
- Market restructuring / liberalisation
- ...
1. Scope of the Study

Policy Questions to be Addressed

- Specific policy questions:
 - What policy interventions are necessary to ensure adequate, reliable, and affordable energy supplies?
 - What needs to be done and what will be the costs to supply modern energy sources to remote areas?
 - What needs to be done to increase the share of renewable technologies?
 - Can energy conservation program help in reducing cost of energy supply?
 - What if environmental regulations are made more stringent?
 - What will be the consequences of market restructuring and liberalization?
 - What is the suitable level of taxes or subsidies?
 - Should the electricity import be allowed?
 - Should the existing nuclear facilities be closed down?
 - ...

- Target oriented questions
 - Increase share of RES (e.g. to 30% by 2030)
 - Reducing energy import dependency (e.g. to 20% by 2030)
 - Reduce environmental impact (e.g. avoid SO₂ and other emission)
 - ...

- Strategy oriented questions
 - Possible role of renewable energy sources
 - Economic potential of hydropower
 - ...

IAEA
Preparatory Work to Facilitate Identification of Issues

- Review of existing studies
- Review of socio-economic development plans
- Review of sectorial policy/plan documents (coal, oil, gas, renewable...)
- Review of studies on resource assessment (e.g., technical potential vs. economic potential)
- Review of environmental regulations
- Cost estimates
2. System Configuration

Reference Energy System

- An energy supply system consists of
 - **Energy forms** (natural resources, primary energy, secondary energy, final energy)
 - **Technologies** which convert energy from one form to another or to energy service
 - **Technologies** which transport and distribute energy

- Total energy system costs are the sum of:
 - Investment costs
 - Fuel costs
 - Operation and maintenance costs
 - Resource costs
 - Environmental penalties

- There is much flexibility – but do not overcomplicated
3. Scenario Representation

What is a scenario?

• Scenario - not prediction, but description of possible future development
 • Consistent set of assumptions (reflecting policies and constraints)
 • Expert judgment on how the future may evolve (prices, technologies...)
 • Model results

• Set of alternative scenarios
 • Provide alternative development paths
 • Assist in understanding possible future developments of complex systems
 • Helps identify robust investment choices and policies
3. Scenario Development
Scenario Representation for the Future

- Analysts should specify:
 - Available technologies
 - Development of technological parameters (e.g., investment costs, unit size, construction time, efficiency, O&M costs, emission factors, limitation etc.) for each identified technology
 - Development (over time) of import and export prices for fuel
 - Development (over time) of resource availability and costs
 - Policy constraints (fixed investment plan, environmental regulation, other socio-economic policies)

- Based on:
 - Concrete plans and policies
 - Expert judgments and informed guesses
Interpretation of Outputs

- Each plan has various implications
 - Financial, environmental, social, etc.
- Policy implications can be obtained by analysing alternative development path of energy systems, in terms of
 - Resource availability
 - Costs
 - Environmental regulation
 - Strategic objectives (security of supply, availability of energy...)
 - etc.
Model Development

- Model is an abstracted form of the real world
- Keep focus on objectives
- Consider available human resources and data availability
- Define system boundaries and system details
- Design model keeping it as simple as possible
- Build gradually
- Check and interpret results
- Prepare recommendations
MESSAGE

• Offers a powerful and flexible framework for modelling, analysis and assessment of energy system and design of energy policies
• Capacity building for energy planning and support in model use available through IAEA
... atoms for peace.