

# IRENA FlexTool

# Methodology



**IRENA 2020** 



## Contents



1. Major assumptions

- 2. Building blocks
- 3. Investment run
- 4. <u>Costs</u>
- 5. More information



# **Major Assumptions**



Ē



- 1. Perfect foresight
- 2. Linear model
- 3. Formulated with MathProg, solved with an open solver
- 4. Cost minimising

Back to contents



- FlexTool has no uncertainty it knows what will happen and solves a perfect dispatch
- In reality:
  - uncertainty forces transmission system operators to commit more resources than needed
  - uncertainty means, e.g., charging and discharging of energy storages cannot be fully optimal
- FlexTool commits
  - resources sufficient for perfect dispatch
  - single upward reserve that can cover variability within model time step as well as contingencies
- Reserves that are used to mitigate forecast errors (longer than model time step) can be used during dispatch – FlexTool should not keep those reserved, because then they could not be used

## • Consequences:

- Value of storages can be higher than can be really achieved
- Slightly smaller costs, since the model can manage with less online units



- IRENA FlexTool does **not use integer** decision variables (*e.g.,* on/off)
  - Instead, startups have been linearised (unit can start also partially)
- It matters when:
  - Running operational optimisation for actual system operation
  - Comparing technologies that have distinct **start-up** characteristics (*e.g.,* gas turbine vs. gas engine)
  - Small systems with only few units
  - Large individual units in comparison to system size
  - System **stability** requires some units to be online (can be endogenously forced in FlexTool)
- It matters a little in:
  - **High level** long-term planning
  - Systems with **flexible generation** portfolios



- FlexTool uses GNU MathProg language to formulate the optimisation problem to a separate solver
- Solver minimises (or maximises) a system of linear equations
  - flexModel.mod is a MathProg file and contains the equations
- For linear problems, open source solvers perform quite well
  - Especially Clp (Coin-or linear programming) used by FlexTool
- In mixed-integer problems commercial solvers are orders of magnitude better than open source solvers
- Efficient solution algorithms are based on primal simplex, dual simplex, and interior point methods
- Genetic algorithms, AI, particle swarm, annealing, etc. methods also exist, but are much slower
- Linear problems are typically solved to global optimum (integer problems are typically not defined by solution gap)

## **Objective function**



[units: capacity]

[units: invested\_capacity]

[v\_invest | v\_investTransfer]

## **Cost minimisation**

| ſ            | + fixed operation and maintenance costs         | [capacity × unittype: fixed_cost]                                         |
|--------------|-------------------------------------------------|---------------------------------------------------------------------------|
|              | + variable operation and maintenance costs      | [ <i>v_gen</i>   <i>v_charge</i>   <i>v_convert</i> × unittype: O&M_cost] |
| Operation –  | + fuel costs of units                           | [ <i>v_fuelUse</i> × fuel: fuel_price]                                    |
|              | + CO2 emission costs                            | [ <i>v_fuelUse</i> × fuel: CO2_content × master: CO2_cost]                |
|              | _ + start-up costs                              | [ <i>v_startup</i> × unittype: startup_cost]                              |
| Γ            | + penalty cost for loss of load                 | [ <i>v_slack</i> × master: loss_of_load_penalty]                          |
|              | + penalty cost for insufficient upward reserves | [ <i>v_reserveSlack</i> × master: loss_of_reserves_penalty]               |
| Penalties    | + penalty cost for insufficient capacity margin | [ <i>v_capacitySlack</i> × master: lack_of_capacity_penalty]              |
|              | + penalty cost for curtailment of VRE           | [ <i>v_curtail</i> × master: curtailment_penalty]                         |
|              | + penalty cost for insufficient inertia         | [ <i>v_inertiaSlack</i> × master: lack_of_inertia_penalty]                |
| ſ            | + unit investment costs                         | [ <i>v_invest</i> × unit_type: inv.cost_kW × annuity]                     |
| Investment - | + storage investment costs                      | [ <i>v_investStorage</i> × unit_type: inv.cost_kWh × annuity              |
|              | + transmission line investment costs            | [ <i>v_investTransfer</i> × nodeNode: inv.cost_kW × annuity]              |
|              |                                                 |                                                                           |

Capacity

+ pre-existing capacity

+ forced new capacity

+ invested new capacity

=



# **Building Blocks**

## Contents

Ē

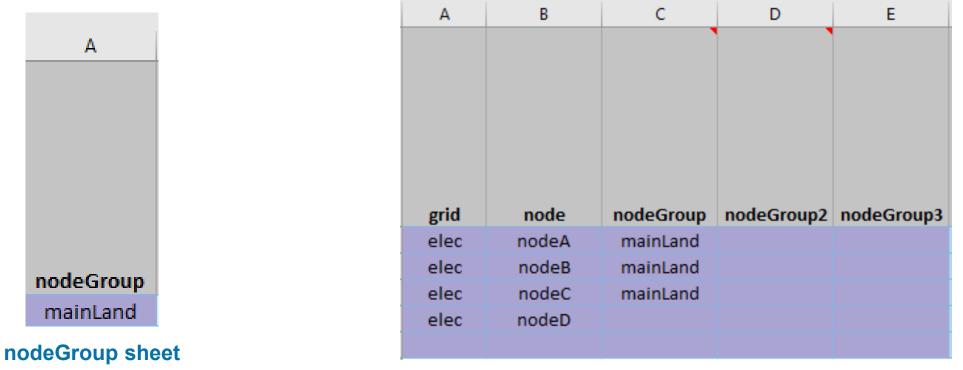


1. <u>Grid</u>

# 2. <u>Node</u>

- Demand
- Reserve requirements
- Non-synchronous limit
- Inertia limit
- Transfer between nodes

# 3. <u>Unit</u>


- Defining unit category
- Upward limit
- Online variable
- Ramp constraint
- Advanced features
- 4. Timestep

## gridNodes



• Grids, nodes, and nodeGroups are defined in

- nodeGroup and
- gridNode sheets



gridNode sheet

## One of the basic building blocks, 1/2



- Grids are used to label different grids (*e.g.*, electricity and natural gas)
  - No equations or constraints related only to grid
  - Used when presenting results
- Combination of **gridNodes** used in defining the model

## One of the basic building blocks, 2/2



- Grids and nodes are used to model characteristics of geographical areas,
  - Demand,
  - Reserve requirements,
  - Non-synchronous limit
  - Inertia limit
- One node can be part of only one grid
  - They can cover the same geographical area, but need different names

• Nodes can be modelled individually or as a group of nodes

• Transfers between nodes allows sharing generation and reserves

## **Demand of each node**



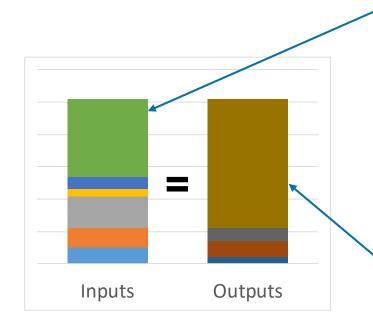
- Net demand in each node is a sum of demand and import
  - Annual sums are defined in **gridNode** sheet
  - Hourly values are calculated based on normalised time series

| А    | В     | С         | D          | E          | F            | G            |
|------|-------|-----------|------------|------------|--------------|--------------|
| grid | node  | nodeGroup | nodeGroup2 | nodeGroup3 | demand (MWh) | import (MWh) |
| elec | nodeA | mainLand  |            |            | 7008000      | 350400       |
| elec | nodeB | mainLand  |            |            | 2190000      |              |
| elec | nodeC | mainLand  |            |            | 3504000      |              |
| elec | nodeD |           |            |            | 438000       |              |
|      |       |           |            |            |              |              |

|    | Α     | В    | с     | D    |
|----|-------|------|-------|------|
| 1  |       | grid | elec  | elec |
| 2  |       | node | nodeA | node |
| 2  | time  | noue | noueA | noue |
| 5  | ume   |      |       |      |
| 4  | t0000 |      | 589   | 208  |
| 5  | t0001 |      | 537   | 203  |
| 6  | t0002 |      | 506   | 197  |
| 7  | t0003 |      | 482   | 190  |
| 8  | t0004 |      | 472   | 188  |
| 9  | t0005 |      | 454   | 184  |
| 10 | t0006 |      | 423   | 175  |

|   | Α     | В    | С     |
|---|-------|------|-------|
| 1 |       | grid | elec  |
| 2 |       | node | nodeA |
| 3 | time  |      |       |
| 4 | t0000 |      | 40    |
| 5 | t0001 |      | 40    |
| 6 | t0002 |      | 40    |
| 7 | t0003 |      | 40    |
| 8 | t0004 |      | 40    |
| 9 | t0005 |      | 40    |
|   | 10005 |      | 40    |

#### gridNode sheet


#### ts\_energy sheet

#### ts\_import sheet

#### Normalised demand of one hour: Demand (t0001) =

- ts\_energy(t0001) / sum\_t(ts\_energy)
- \* annual demand





- + generation from non-VRE units
- + generation from VRE units
  - curtailment of VRE units
- + imports\*
- + energy conversions to the node\*
- + discharging of storages\*
- + loss of load
- + energy demand
- + exports\*

=

- + energy conversions from the node
- + charging of storages

[v\_gen]
[ts\_cf: time series] × capacity
[v\_curtai/]
[v\_transfer and/or ts\_import: time series]
[v\_convert]
[v\_gen]
[v\_slack]

[v\_charge and/or ts\_demand: time series]
[v\_transfer and/or ts\_import: time series]
[v\_convert]
[v\_charge]

## **Reserve requirements: Static reserves**



- Static reserves are predefined time series that need to be activated
  - For single node or node group
- If static reserves are activated, every node and node\_group requires own matching time series
- Dynamic reserves are calculated based on generating units (see next slide), but these need also to be activated



gridNode sheet + ts\_reserve\_node

|   | А     | В         | с        |
|---|-------|-----------|----------|
| 1 |       | nodeGroup | mainLand |
| 2 | Time  |           |          |
| 3 | t0000 |           | 54       |
| 4 | t0001 |           | 50       |
| 5 | t0002 |           | 47       |
| 6 | t0003 |           | 45       |
| 7 | t0004 |           | 44       |
| 8 | t0005 |           | 43       |

nodeGroup sheet + ts\_reserve

9 t0006

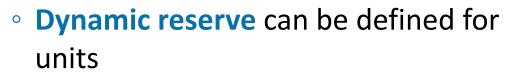
10 +0007

color in r

dynamic

BCD

Δ


nodeGroup

mainLand

+ ts\_reserve\_nodeGroup

40

## **Reserve requirements: Dynamic reserves**



- Reserve increase ratio in unit sheet
- By default used with VRE generation
- When unit generates, it increases the reserve need
- *E.g.,* 10 MW of wind power is defined to need 1 MW reserves

 Dynamic reserve is not additional to static, model checks every hour (stricter requirements)

|   | A         | В         | CD                 |        |            |            |             |             | J             | ĸ                      | L               | M             | N                      | 0                | P             | Q              | R                      | 5 |
|---|-----------|-----------|--------------------|--------|------------|------------|-------------|-------------|---------------|------------------------|-----------------|---------------|------------------------|------------------|---------------|----------------|------------------------|---|
|   |           |           |                    | Inp    | u          | -          |             | 0           |               |                        |                 |               |                        |                  |               |                |                        |   |
| 1 | unitGroup | unit type | fuel<br>cf profile | inflow | input grid | input node | output grid | output node | capacity (MW) | invested capacity (MW) | max invest (MW) | storage (MWh) | invested storage (MWh) | max invest (MWh) | storage start | storage finish | reserve increase ratio |   |
| 2 | Coal      | ST_coal   | oal                |        |            | e          | ele         | de          | #             |                        | 0               |               |                        |                  |               |                |                        |   |
| 3 | Oil       | CC_oil    | oil                |        |            | e          | ele         | de          | #             |                        | 0               |               |                        |                  |               |                |                        |   |
| 4 | Bio       | ST_bio    | mas                | s      |            | e          | ele         | de          | #             |                        | 0               |               |                        |                  |               |                |                        |   |
| 5 | Wind      | wind      | wind               | I_A    |            | e          | ele         | de          | 0             |                        | 0               |               |                        |                  |               |                | 0.10                   |   |
| 6 | PV        | PV        | P١                 | /      |            | e          | ele         | de          | #             |                        | 0               |               |                        |                  |               |                | 0.10                   |   |
| 7 | Battery   | battery   |                    |        |            | e          | ele         | de          | 0             |                        |                 | 0             |                        | 0                |               |                |                        |   |

unit sheet



### 

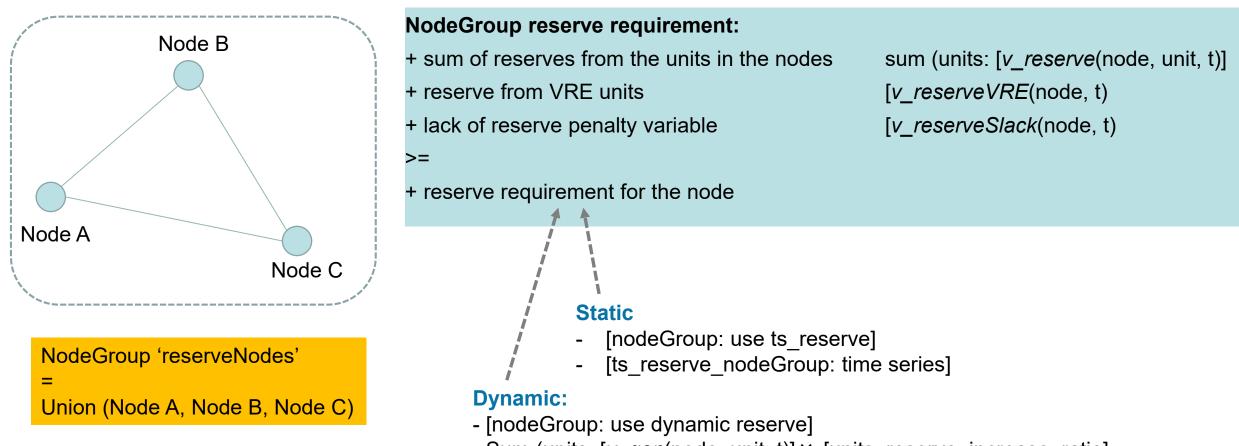
#### Single node reserve requirement:

- + sum of reserves from the units in the node
- + reserve from VRE units
- + lack of reserve penalty variable
- >=
- + reserve requirement for the node

**Static** 

-

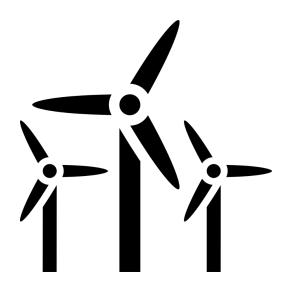
sum (units: [v\_reserve(node, unit, t)]
[v\_reserveVRE(node, t)
[v\_reserveSlack(node, t)


#### **Dynamic:**

- [gridNode: use dynamic reserve]
- Sum (units: [v\_gen(node, unit, t)] × [units: reserve\_increase\_ratio]

[gridNode: use ts reserve]

[ts reserve node: time series]






- Sum (units: [*v\_gen*(node, unit, t)] × [units: reserve\_increase\_ratio]

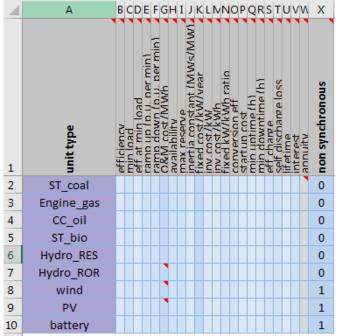
| VRE upward reserve:    |                                |  |
|------------------------|--------------------------------|--|
| + reserve from VRE     | [v_reserveVRE]                 |  |
| <=                     |                                |  |
| + VRE curtailment      | [v_curtail]                    |  |
| × reserve contribution | [unit_type: max_reserve (0-1)] |  |





| St  | orage content reserve lin | nit:                       |
|-----|---------------------------|----------------------------|
| + r | reserve from storage unit | [v_reserve]                |
| <=  | :                         |                            |
| + ( | charged energy            | [v_state]                  |
|     | / duration of the reserve | [master: reserve_duration] |
|     |                           |                            |




## Maximum non-synchronous share, 1/2



- Maximum non-synchronous shares activated in master sheet
- Defined for single node or node group
- Units are flagged synchronous (0) or non-synchronous (1) in unitType sheet

| 1 | A         | В                    | C                     | DEFG                                                                              |
|---|-----------|----------------------|-----------------------|-----------------------------------------------------------------------------------|
| 1 | nodeGroup | capacity margin (MW) | non synchronous share | inertia limit (MWs)<br>use ts. reserve<br>use dynamic reserve<br>color in results |
| 2 | mainLand  |                      | 0.80                  |                                                                                   |
|   |           |                      |                       |                                                                                   |

#### nodeGroup sheet



| n | i | ť | Τ | V | / | 0 | e | • | S | า | e | e | ) | t |  |  |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|--|

|                                       | parameter                | value |
|---------------------------------------|--------------------------|-------|
|                                       | co2_cost                 | 10    |
|                                       | loss_of_load_penalty     | 10000 |
|                                       | loss_of_reserves_penalty | 20000 |
|                                       | lack_of_inertia_penalty  | 30000 |
|                                       | curtailment_penalty      | 20    |
|                                       | lack_of_capacity_penalty | 5000  |
|                                       | time_in_years            | 1.000 |
|                                       | time_period_duration     | 60    |
| sheet                                 | reserve_duration         | 0.50  |
|                                       | use_capacity_margin      | 1     |
|                                       | use_online               | 1     |
|                                       | use_ramps                | 0     |
| $\boldsymbol{\boldsymbol{\varsigma}}$ | use_non_synchronous      | 1     |
|                                       | use_inertia_limit        | U     |
|                                       | mode_invest              | 0     |
|                                       | mode_dispatch            | 1     |
|                                       | print_duration           | 0     |
|                                       | print_durationRamp       | 0     |
|                                       | print_unit_results       | 0     |

master

|   | А    | В     | С         | DE | FG     | н                    | Ι                     | JKLN                                                                      |
|---|------|-------|-----------|----|--------|----------------------|-----------------------|---------------------------------------------------------------------------|
| 1 | grid | node  | nodeGroup | GG | Pand C | capacity margin (MW) | non synchronous share | usets reserve<br>use dynamic reserve<br>brint results<br>color in results |
| 2 | elec | nodeA | mainLand  |    |        | #                    | 0.90                  |                                                                           |
| 3 | elec | nodeB | mainLand  |    |        | #                    | 0.90                  |                                                                           |
| 4 | elec | nodeC | mainLand  |    |        | #                    | 0.90                  |                                                                           |
| 5 | elec | nodeD |           |    |        | 5                    | 0.80                  |                                                                           |
| 6 |      |       |           |    |        |                      |                       |                                                                           |

gridNode sheet



+ non-synchronous generation + non-synchronous VRE generation - curtailment of VRE units + non-synchronous conversion + HVDC transfer into the node + discharging of non-synch. storages <= maximum non synchronous share × ( + energy demand + exports - imports

- + energy conversions from the node [v\_convert]
- + charging of storages
- loss of load

[v\_gen]
[ts\_cf: time series] × capacity
[v\_curtail]
[v\_convert]
[v\_transfer]
[v\_gen]

[v\_charge]

[v slack]

Can be applied to

- group of nodes [nodeGroup]
- individual nodes [gridNode]

[nodeGroup: non synchronous share]

[*v\_charge* and/or ts\_demand: time series] [*v\_transfer* and/or ts\_import: time series]

## Minimum inertia limit, 1/2



- Minimum inertia limit needs to be activated from master sheet in input data (use\_inertia\_limit = 1)
- Defined only for node groups
- Inertia constant for each unit defined in unitType (MWs/MW)

|   | parameter                | value |                  |
|---|--------------------------|-------|------------------|
|   | co2_cost                 | 10    |                  |
|   | loss_of_load_penalty     | 10000 |                  |
|   | loss_of_reserves_penalty | 20000 |                  |
|   | lack_of_inertia_penalty  | 30000 |                  |
|   | curtailment_penalty      | 20    |                  |
|   | lack_of_capacity_penalty | 5000  |                  |
|   | time_in_years            | 1.000 |                  |
|   | time_period_duration     | 60    |                  |
|   | reserve_duration         | 0.50  |                  |
|   | use_capacity_margin      | 1     |                  |
|   | use_online               | 1     |                  |
|   | use_ramps                | 0     |                  |
|   | uso_non_synchronous      | 1     |                  |
| < | use_inertia_limit        | 0     | $\triangleright$ |
|   | mode_invest              | U     |                  |
|   | mode_dispatch            | 1     |                  |
|   | print_duration           | 0     |                  |
|   | print_durationRamp       | 0     |                  |
|   | print_unit_results       | 0     |                  |
|   |                          |       |                  |

| 1 | A               | BC                   | D                    | EFG                                                        |  |  |  |  |  |
|---|-----------------|----------------------|----------------------|------------------------------------------------------------|--|--|--|--|--|
| 1 | nodeGroup       | capacity margin (MW) | inertia limit (MW s) | use ts. reserve<br>use dynamic reserve<br>color in results |  |  |  |  |  |
| 2 | mainLand        |                      | 100                  |                                                            |  |  |  |  |  |
|   | nodeGroup sheet |                      |                      |                                                            |  |  |  |  |  |

|    | А          | BCDEFGHI J KLNNCPCRSTLVVX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | unit type  | efficiency<br>min load<br>ramp up in load<br>ramp up in load<br>C&M cost /MWh<br>availability<br>max reserve<br>inertia constant (MW s/MW)<br>inertia constant (MW s/MW)<br>rivency rkwn<br>rivency reserve<br>rivency riserve<br>rivency reserve<br>rivency reserve<br>rivency riserve<br>rivency rivency rivency<br>rivency rivency<br>rivency rivency<br>rivency rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>rivency<br>riv |
| 2  | ST_coal    | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3  | Engine_gas | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4  | CC_oil     | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5  | ST_bio     | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6  | Hydro_RES  | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7  | Hydro_ROR  | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8  | wind       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9  | PV         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10 | battery    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

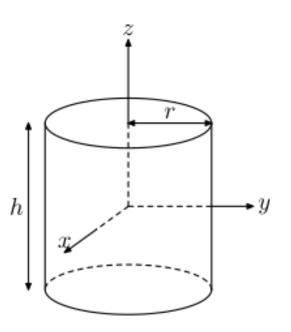
unitType sheet

#### master sheet

### 

Can be applied only to group of nodes [nodeGroup]

- + online capacity of conventional online units × inertia constant
- + generation of conventional units without online × inertia constant
- + generation from VRE units


× inertia constant

- + lack of inertia penalty variable
- >=

+ inertia limit in MWs

[v\_online]
[unit\_type: inertia constant]
[v\_gen]
[unit\_type: inertia constant]
[ts\_cf: time series] × capacity
[unit\_type: inertia constant]
[v\_inertiaSlack]

[nodeGroup: inertia limit]



## Transfers, 1/2



- Transfers between nodes are defined in nodeNode sheet
  - Both nodes have to be from the same grid
  - Existing transfer links can have different capacity to different direction
  - Future investments will always have equal capacity to both directions

|   | А    | В     | С     | D                  | E                 | F                      | G               | н    | Ι           | J        | к        | L       | М    | N                |  |
|---|------|-------|-------|--------------------|-------------------|------------------------|-----------------|------|-------------|----------|----------|---------|------|------------------|--|
| 1 | grid | node1 | node2 | cap.rightward (MW) | cap.leftward (MW) | invested capacity (MW) | max invest (MW) | loss | inv.cost/kW | lifetime | interest | annuity | HVDC | color in results |  |
| 2 | elec | nodeA | nodeB | 150                | 150               |                        | 0               | 0.01 | 100         | 50       | 0.08     | 0.082   | 0    |                  |  |
| 3 | elec | nodeB | nodeC | 100                | 100               |                        | 0               | 0.01 | 100         | 50       | 0.08     | 0.082   | 0    |                  |  |

nodeNode sheet



- Transfer with losses requires at least two variables
  - A linear equation with 'loss x transfer' would mean that in the other direction the loss is actually a
    gain
- The loss can be used to make the model 'leak'
  - Instead of curtailing VRE, the model can dissipate energy by transferring in two directions at once
  - Can be controlled only with a binary variable (not allowed in FlexTool)
- Hence, three variables: transfer, transfer rightward and transfer leftward
  - Transfer does not contain loss
  - Transfer rightward allows losses and helps to limit the leakage
  - Transfer leftward helps to limit the leakage further



• Two nodes: left and right (a node-node link is established with one direction only)

- When transferring from **left to right**:
  - Left node: transfer deducted from node balance
  - Right node: transfer minus loss added to the node balance
- When transferring from **right to left**:
  - Left node: transfer minus loss added to the node balance
  - Right node: transfer deducted from node balance

|   | Balance leftward node |                                               |  |  |  |  |  |  |  |
|---|-----------------------|-----------------------------------------------|--|--|--|--|--|--|--|
|   | + transfer            | [ <i>v_transfer</i> (g,n,n_right,t)]          |  |  |  |  |  |  |  |
| ( | minus loss            | ×(1 – [nodeNode: loss])                       |  |  |  |  |  |  |  |
|   | + rightward transfer  | [ <i>v_transferRightward</i> (g,n,n_right,t)] |  |  |  |  |  |  |  |
|   | loss                  | ×[nodeNode: loss]                             |  |  |  |  |  |  |  |
|   |                       |                                               |  |  |  |  |  |  |  |

#### When rightward: CANCELS EACH OTHER

| Balance rightward node |                                     |  |  |  |  |  |  |
|------------------------|-------------------------------------|--|--|--|--|--|--|
| + transfer             | [ <i>v_transfer</i> (g,n_left,n,t)] |  |  |  |  |  |  |
| - rightward transfer   | [v_transferRightward(g,n_left,n,t)] |  |  |  |  |  |  |
| ×loss                  | ×[nodeNode: loss]                   |  |  |  |  |  |  |
|                        |                                     |  |  |  |  |  |  |

**IRENA** 

**FlexT** 

#### When leftward: ZERO

## **Transfer constraints**



| Tie transfers together                |                                                    |
|---------------------------------------|----------------------------------------------------|
| + transfer                            | [ <i>v_transfer</i> (g,n_left,n_right,t)]          |
| =                                     |                                                    |
| + rightward transfer                  | [ <i>v_transferRightward</i> (g,n_left,n_right,t)] |
| <ul> <li>leftward transfer</li> </ul> | [ <i>v_transferLeftward</i> (g,n_left,n_right,t)]  |
|                                       |                                                    |

| Limit rightward transfer |                                           |                                                                       | Limit rightward transfer again |                                           |  |  |  |
|--------------------------|-------------------------------------------|-----------------------------------------------------------------------|--------------------------------|-------------------------------------------|--|--|--|
| + transfer               | [ <i>v_transfer</i> (g,n_left,n_right,t)] | ,n_left,n_right,t)] + transfer rightward [ <i>v_transferRightware</i> |                                | [v_transferRightward(g,n_left,n_right,t)] |  |  |  |
| <=                       |                                           |                                                                       | <=                             |                                           |  |  |  |
| + capacity               | [see orange box]                          |                                                                       | + capacity                     | [see orange box]                          |  |  |  |

#### And same for leftward transfers!!!

#### Rightward capacity

- + pre-existing leftward transfer capacity [nodeNode: cap\_rightward]
- + forced new capacity+ invested new capacity

=

[nodeNode: invested\_capacity] [v\_investTransfer]



• Transfer with losses works, but the model can leak

 In normal circumstances, the model does not leak (why waste energy?), but the model can use leakage instead of VRE curtailment (if curtailment has a penalty cost)

• E.g.,

- Rightward transfer = 100 MW
- Leftward transfer = -100 MW
- $\rightarrow$  Transfer = 0
- Loss = 5 %
- $\rightarrow$  Leakage = 100 MW × 5% = 5 MW

Leakage shown in Summary sheet of Results ('Model leakage TWh/a')



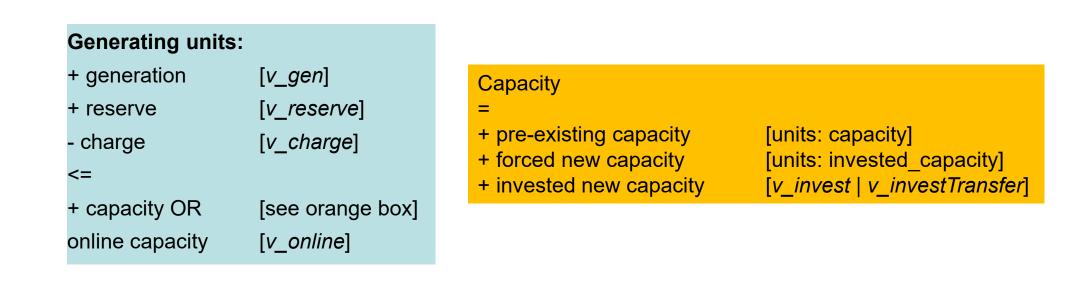
- Units are used to model
  - Power plants,
  - Storages,
  - Inflow units, *e.g.*, hydro power,
  - VRE units, *e.g.*, wind and solar,
  - Scheduled run units,
  - Conversion units (*e.g.*, power to heat), etc.

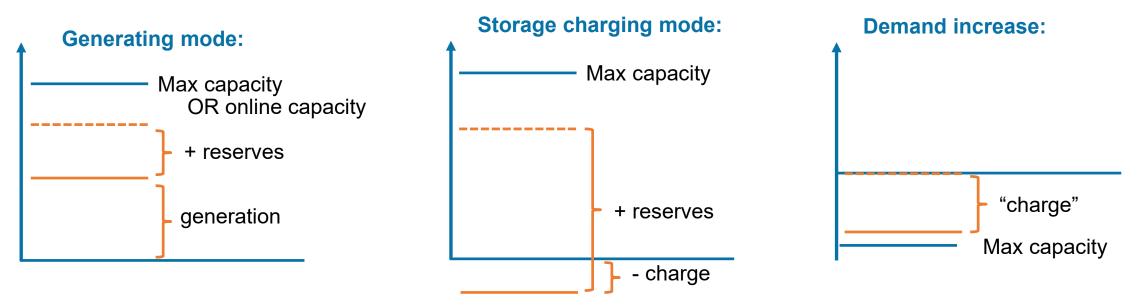
 Units are modelled slightly differently in dispatch and invest modes. Invest mode simplifies equations, because it is much slower to solve. Main constraints and equations for units in dispatch mode are

- Upward limit of generation, reserve provision, and storage charge/discharge (always on)
  - Four unit categories: generating unit, inflow unit without storage, VRE unit, conversion unit
- Online variable (activated by user). If activated, units can have
  - Start-up costs,
  - Minimum uptime and downtime, and
  - Efficiency loss with partial load
- Ramp constraint (activated by user)
- Costs related to unit operations (always on, but parameters can have 0 value)
  - Variable costs: fuel, variable O&M, CO<sub>2</sub> cost, startup costs
  - Fixed costs: fixed O&M

Ę

- Four unit categories: generating unit, inflow unit without storage, VRE unit, conversion unit
  - FlexTool decides unit category based on the unit input defined in "units" sheet
  - Input options: fuel, cf profile, inflow, input grid/node, none


|    | Α         | В         | С       | D          | E                            | F           | G          | н           | Ι           | J             | к                      | L               | М             |
|----|-----------|-----------|---------|------------|------------------------------|-------------|------------|-------------|-------------|---------------|------------------------|-----------------|---------------|
|    |           |           | Inpu    |            | e (fuel, cf, i<br>odel node) | ' <u>or</u> | Out        | tput #1     |             | city (MW)     | (M)                    | -               |               |
| 1  | unitGroup | unit type | fuel    | cî profile | inflow                       | input grid  | input node | output grid | output node | capacity (MW) | invested capacity (MW) | max invest (MW) | storage (MWh) |
| 2  | Coal      | ST_coal   | coal    |            |                              |             |            | elec        | nodeA       | ##            |                        | #               |               |
| з  | Oil       | CC_oil    | oil     |            |                              |             |            | elec        | nodeA       | ##            |                        | #               |               |
| 4  | Bio       | ST_bio    | biomass |            |                              |             |            | elec        | nodeA       | ##            |                        | #               |               |
| 5  | Wind      | wind      |         | wind_A     |                              |             |            | elec        | nodeA       | ##            |                        | #               |               |
| 6  | PV        | PV        |         | PV         |                              |             |            | elec        | nodeA       | ##            |                        | #               |               |
| 7  | Battery   | battery   |         |            |                              |             |            | elec        | nodeA       | ##            |                        |                 | 200           |
| 8  | Hydro     | Hydro_RES |         |            | nodeB_RES                    |             |            | elec        | nodeB       | ##            |                        | 0               | 150000        |
| 9  | Hydro     | Hydro_ROR |         |            | nodeB_ROR                    |             |            | elec        | nodeB       | ##            |                        | 0               | 0             |
| 10 | charger   | EVcharger |         |            |                              | elec        | nodeB      | elec        | EV          | ##            |                        |                 |               |


- **ST\_Coal:** Input from fuel -> generating unit
- Wind: input from cf\_profile -> VRE unit
- **Battery**: no input + storage -> generating unit
- **Hydro\_RES**: inflow + storage -> generating unit
- Hydro\_ROR: inflow, but no storage -> inflow unit without storage
- **EVcharger**: input from node -> conversion unit

#### units sheet

Ē









- s.t. upwardLimitOnline {(g,n,u,t) in gnut : (g,n,u) in gnu\_gen && u in unit\_online} :
  - + v\_gen[g,n,u,t]
  - + (if (g,n,u) in gnu\_reserve then v\_reserve[g,n,u,t])
  - (if (g,n,u) in gnu\_storage\_charging then v\_charge[g,n,u,t])

#### <=

;

Ē

```
+ v_online[g,n,u,t]
```



## Simplified unit categories to allow faster solve time

| Inflow but no storage: |                     |  |  |  |  |  |  |
|------------------------|---------------------|--|--|--|--|--|--|
| + generation           | [v_gen]             |  |  |  |  |  |  |
| + reserve              | [v_reserve]         |  |  |  |  |  |  |
| <=                     |                     |  |  |  |  |  |  |
| + inflow time series   | [ts_inflow: series] |  |  |  |  |  |  |


| VRE units:        |                      | Capacity                     |                               |
|-------------------|----------------------|------------------------------|-------------------------------|
| + curtail         | [v_curtail]          | =<br>+ pre-existing capacity | [units: capacity]             |
| <=                |                      | + forced new capacity        | [units: invested_capacity]    |
| + capacity factor | [ts_cf: time series] | + invested new capacity      | [v_invest   v_investTransfer] |
| × capacity        | [see orange box]     |                              |                               |





- Single variable v\_convert presents both directions of the conversion
- In the input node, the energy consumption is equal to v\_convert / efficiency
- The output node energy yield is just *v\_convert*
- Efficiency can be a time series
- Maximum capacity is limited on the input side (units sheet capacity affects input, *e.g.*, heat pump with 100 MW capacity and 2.5 COP can generate 250 MW heat, but can be affected by efficiency time series)
- No **startups or online** for conversion units

| Conversion upward limit:   |                  |  |  |  |  |  |
|----------------------------|------------------|--|--|--|--|--|
| + convert                  | [v_convert]      |  |  |  |  |  |
| + reserve (to output node) | [v_reserve]      |  |  |  |  |  |
| <=                         |                  |  |  |  |  |  |
| + capacity                 | [see orange box] |  |  |  |  |  |
| OR online capacity         | [v_online]       |  |  |  |  |  |
|                            |                  |  |  |  |  |  |





 User defines reserve capabilities of generation and conversion units in input data file, sheet unit\_type

| 1 | А          | В          | С        | D               | E                      | F                        | G        | Н            | Ι           | J                         | K                  | L | м            | N                  | 0              | P            | Q              | R                | S          | т                   | υ        | v        | w       | x               |
|---|------------|------------|----------|-----------------|------------------------|--------------------------|----------|--------------|-------------|---------------------------|--------------------|---|--------------|--------------------|----------------|--------------|----------------|------------------|------------|---------------------|----------|----------|---------|-----------------|
|   | unit type  | efficiency | min load | eff at min load | ramp up (p.u. per min) | ramp down (p.u. per min) | cost/MWh | availability | max reserve | inertia constant (MWs/MW) | fixed cost/kW/year | ≥ | inv.cost/kWh | fixed kW/kWh ratio | conversion eff | startup cost | min uptime (h) | min downtime (h) | eff charge | self discharge loss | lifetime | interest | annuity | non synchronous |
|   | ST_coal    | #          | #        | #               | #                      | #                        | #        | #            | 1.00        | #                         | #                  | # |              |                    |                | #            | #              | #                |            |                     | #        | #        | #       | 0               |
|   | Engine_gas | #          | #        | #               | #                      | #                        | #        | #            | 1.00        | #                         | #                  | # |              |                    |                | #            | 4              |                  |            |                     | #        | #        | #       | 0               |
|   | CC oil     | #          | Ħ        | Ħ               | #                      | #                        | #        | Ħ            | 1 00        | #                         | #                  | Ħ |              |                    |                | Ħ            | 5              | 5                |            |                     | #        | Ħ        | #       | 0               |

unit\_type sheet





#### Capacity

#### =

- + pre-existing capacity
- + forced new capacity
- + invested new capacity

[units: capacity] [units: invested\_capacity] [v\_invest | v\_investTransfer]





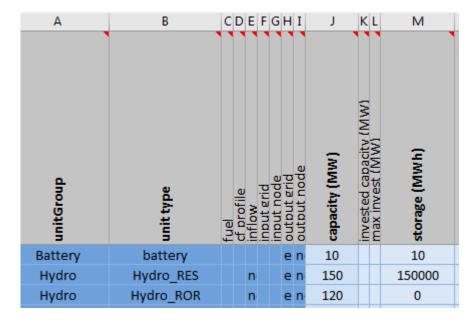
- Conversion units convert energy from one type to another, *e.g.*, electricity to hydrogen or EV charger (grid electricity to car electricity)
- In g,n,u,t language, conversion unit changes energy from one grid to another
- This is different from an unit that changes energy from one node to another (transfer link)

| Limit for providing reserve when converting <u>from</u> electricity: |                            |  |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------|----------------------------|--|--|--|--|--|--|--|--|--|--|
| + reserve (input node)                                               | [v_reserve(g,n_input,u,t)] |  |  |  |  |  |  |  |  |  |  |
| <=                                                                   |                            |  |  |  |  |  |  |  |  |  |  |
| + convert                                                            | [v_convert]                |  |  |  |  |  |  |  |  |  |  |
| × max_reserve                                                        | [unit_type: max_reserve]   |  |  |  |  |  |  |  |  |  |  |
|                                                                      |                            |  |  |  |  |  |  |  |  |  |  |

| Limit for providing reserve when converting <u>to</u> electricity: |                             |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------|-----------------------------|--|--|--|--|--|--|--|--|--|--|
| + reserve (output node)                                            | [v_reserve(g,n_output,u,t)] |  |  |  |  |  |  |  |  |  |  |
| <=                                                                 |                             |  |  |  |  |  |  |  |  |  |  |
| + capacity                                                         | [see orange box]            |  |  |  |  |  |  |  |  |  |  |
| × max_reserve                                                      | [unit_type: max_reserve]    |  |  |  |  |  |  |  |  |  |  |
|                                                                    |                             |  |  |  |  |  |  |  |  |  |  |

Ē




Inflow time series can be used to generation or reserves

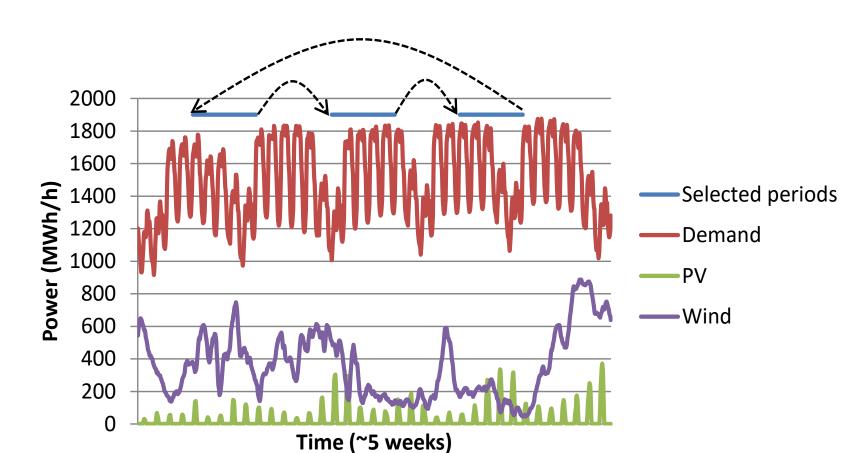
| Inflow but no storage: |                     |
|------------------------|---------------------|
| + generation           | [v_gen]             |
| + reserve              | [v_reserve]         |
| <=                     |                     |
| + inflow time series   | [ts_inflow: series] |
|                        |                     |

## **Storages**



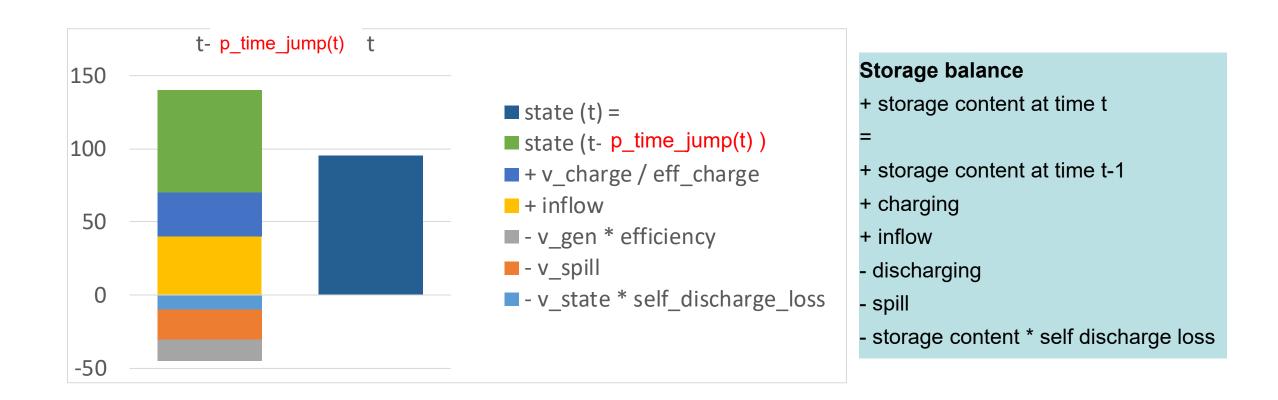
- Deciding parameter is **'storage (MWh)'** in units sheet
  - If 'storage (MWh)' has a positive value, unit has storage → Hydro\_RES is storage unit and hydro\_ROR is not
  - More details of storage can be given in unit\_type sheet, *e.g.*, charge efficiency (eff charge), storage losses (self discharge loss), and discharge efficiency (efficiency)




| А         | В          | CD                          | EF                   | Gŀ           | ΗI                          | J                         | к                  | L           | ИN                 | 0            | Ρ            | QR                                 | S          | Т                   | UVWX                                               |
|-----------|------------|-----------------------------|----------------------|--------------|-----------------------------|---------------------------|--------------------|-------------|--------------------|--------------|--------------|------------------------------------|------------|---------------------|----------------------------------------------------|
| unit type | efficiency | min load<br>off at min load | amp up (p.u. per mir | O&M cost/MWh | availability<br>max reserve | inertia constant (MWs/MW) | fixed cost/kW/vear | inv.cost/kW | fixed kw/kwh ratio | nversion eff | startup cost | min uptime (h)<br>min downtime (h) | eff charge | self discharge loss | lifetime<br>interest<br>annuitv<br>non svnchronous |
| Hydro_RES | 1.00       |                             | # #                  | ‡ ‡          | ŧ #                         | #                         | #                  |             |                    |              |              |                                    |            |                     |                                                    |
| Hydro_ROR | 1.00       |                             | # #                  | ‡ ]‡         | # #                         | #                         | #                  |             |                    |              |              |                                    |            |                     |                                                    |
| battery   | 0.96       |                             | # #                  | ‡ ‡          | # #                         |                           | #                  | 1           | # 1                |              |              |                                    | 0.96       | 0.00040             |                                                    |

#### units sheet

#### unit\_type sheet


## **Time jump for storages**

- It is important to maintain storage chronology when using jumps in time
- In full year run, hours follow other and storages are optimised correctly
- When using jumps, FlexTool has to follow storage values over the jumps.
- Storage value optimisation requires somewhat complicated equations when time jumps are allowed, see following slides.











## • Why?

 Otherwise the model can curtail through losses without limit (linear storage model can generate and charge at the same time)

| ( | Charging limit:      | Generating limit:                    |                      |
|---|----------------------|--------------------------------------|----------------------|
|   | + charge             | [v_charge]                           | + generation         |
|   | <=                   |                                      | <=                   |
|   | + capacity OR online | [units: capacity / <i>v_online</i> ] | + capacity OR online |

| [v_gen]                              |
|--------------------------------------|
|                                      |
| [units: capacity / <i>v_online</i> ] |
|                                      |

| Storage start state        |                        |
|----------------------------|------------------------|
| + state in first time step | [v_state]              |
| =                          |                        |
| + parameter storage start  | [units: storage_start] |

| Storage finish state          |                         |
|-------------------------------|-------------------------|
| + state in the last time step | [v_state]               |
| =                             |                         |
| + parameter storage finish    | [units: storage_finish] |
|                               |                         |

## **Activating online variable: related parameters**

- User activates **online variables** in input data, sheet master (use\_online = 1)
- Minimum load, efficiencies, startup costs, and uptime constraints are unit type parameters (input data, sheet unit\_type)

| parameter                                                                                               | value                      |  |
|---------------------------------------------------------------------------------------------------------|----------------------------|--|
| co2_cost                                                                                                | 10                         |  |
| loss_of_load_penalty                                                                                    | 10000                      |  |
| loss_of_reserves_penalty                                                                                | 20000                      |  |
| lack_of_inertia_penalty                                                                                 | 30000                      |  |
| curtailment_penalty                                                                                     | 20                         |  |
| lack_of_capacity_penalty                                                                                | 5000                       |  |
| time_in_years                                                                                           | 1.000                      |  |
| time_period_duration                                                                                    | 60                         |  |
| reserve_duration                                                                                        | 0.50                       |  |
| use_capacity_margin                                                                                     | 1                          |  |
|                                                                                                         |                            |  |
| use_online                                                                                              | 1                          |  |
| use_online<br>use_ramps                                                                                 | 1                          |  |
| use_ramps                                                                                               |                            |  |
| _                                                                                                       | -                          |  |
| use_ramps<br>use_non_synchronous                                                                        | 0<br>1                     |  |
| use_ramps<br>use_non_synchronous<br>use_inertia_limit                                                   | 0<br>1<br>0                |  |
| use_ramps<br>use_non_synchronous<br>use_inertia_limit<br>mode_invest                                    | 0<br>1<br>0<br>0           |  |
| use_ramps<br>use_non_synchronous<br>use_inertia_limit<br>mode_invest<br>mode_dispatch                   | 0<br>1<br>0<br>0<br>1      |  |
| use_ramps<br>use_non_synchronous<br>use_inertia_limit<br>mode_invest<br>mode_dispatch<br>print_duration | 0<br>1<br>0<br>0<br>1<br>0 |  |

master sheet

|   | А          | В          | С        | D               | Е                      | F | G            | н            | I           | J                         | ĸ                  | L           | м            | N                  | 0              | Ρ            | Q              | R                | S          | тΙ                  | יו       | vw                  | x               |
|---|------------|------------|----------|-----------------|------------------------|---|--------------|--------------|-------------|---------------------------|--------------------|-------------|--------------|--------------------|----------------|--------------|----------------|------------------|------------|---------------------|----------|---------------------|-----------------|
| 1 | unit type  | efficiency | min load | eff at min load | ramp up (p.u. per min) |   | O&M cost/MWh | availability | max reserve | inertia constant (MWs/MW) | fixed cost/kW/year | inv.cost/kW | inv.cost/kWh | fixed kW/kWh ratio | conversion eff | startup cost | min uptime (h) | min downtime (h) | eff change | self dischange loss | litetime | interest<br>annuity | non synchronous |
| 2 | ST_coal    | 0.28       | 0.40     | 0.23            | #                      | # | #            | #            | #           | #                         | #                  | #           |              |                    |                | 2.00         | 12             | 12               |            | ł                   | # #      | # #                 | 0               |
| 3 | Engine_gas | 0.46       | 0.20     | 0.43            | #                      | # | #            | #            | #           | #                         | #                  | #           |              |                    |                | 0.50         | 4              |                  |            | 1                   | # #      | # #                 | 0               |
| 4 | CC oil     | 0.40       | 0.50     | 0.35            | #                      | # | #            | #            | #           | #                         | #                  | #           |              |                    |                | 1.00         | 5              | 5                |            | 1                   | # #      | # #                 | 0               |

#### unit\_type sheet





| Startup                            |             |  |
|------------------------------------|-------------|--|
| + startup(unit, t)                 | [v_startup] |  |
| >=                                 |             |  |
| + online(unit, t)                  | [v_online]  |  |
| - online(unit, <i>previous t</i> ) | [v_online]  |  |

| Online capacity is constrained |                  |  |  |  |  |  |  |  |  |
|--------------------------------|------------------|--|--|--|--|--|--|--|--|
| + online                       | [v_online]       |  |  |  |  |  |  |  |  |
| <=                             |                  |  |  |  |  |  |  |  |  |
| + capacity                     | [see orange box] |  |  |  |  |  |  |  |  |
|                                |                  |  |  |  |  |  |  |  |  |

- Activating online variable increases costs
  - Start up costs (default value = 0)
  - Increased fuel consumption of online units (default value = full load efficiency -> no increase in fuel consumption)

| Capacity<br>=                                                                                               |                                                                                                  |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| <ul> <li>+ pre-existing capacity</li> <li>+ forced new capacity</li> <li>+ invested new capacity</li> </ul> | [units: capacity]<br>[units: invested_capacity]<br>[ <i>v_invest</i>   <i>v_investTransfer</i> ] |

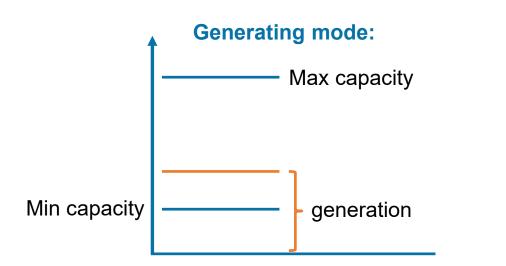


| [ <i>v_online</i> (g,n,u,t)]                  |
|-----------------------------------------------|
|                                               |
| [sum (t_ >= t – unittype:min_uptime & t_ < t) |
| <i>v_startup</i> (g,n,u,t_)]                  |
|                                               |

#### • Online variable is linear

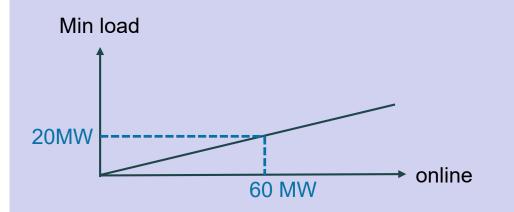
- Not binary
- These limits apply to started up quantity (in MWs)

| Minimum downtime             |                                                          |
|------------------------------|----------------------------------------------------------|
| + online                     | [ <i>v_online</i> (g,n,u,t)]                             |
| <=                           |                                                          |
| + capacity                   | [see orange box]                                         |
| - sum of capacity started up | [sum (t_ >= t + 1 & t_ <= t + 1 + unittype:min_downtime) |
| during minimum downtime      | <i>v_startup</i> (g,n,u,t_)]                             |


| Minimum online<br>+ online<br>>=<br>+ min. online limit             | [ <i>v_online</i> (g,n,u,t)]<br>[capacity * ts_unit: min_online]  | 250                       |                                                                                                     |
|---------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------|
| Minimum generation<br>+ generation<br>>=<br>+ min. generation limit | [ <i>v_gen</i> (g,n,u,t)]<br>[capacity * ts_unit: min_generation] | 200<br>≥ 150<br>100<br>50 | <ul> <li>Capacity</li> <li>Min. online</li> <li>Min. generation</li> <li>Max. generation</li> </ul> |
| Maximum generation<br>+ generation<br><=<br>+ max. generation limit | [ <i>v_gen</i> (g,n,u,t)]<br>[capacity * ts_unit: max_generation] | 0 1 4 7 10 13 16 19 22    |                                                                                                     |

IRENA

**FlexT** 


F

#### 



| Minimum load: |                       |
|---------------|-----------------------|
| + generation  | [v_gen]               |
| >=            |                       |
| + online      | [v_online]            |
| × min.load    | [unit_type: min_load] |
|               |                       |

Example unit: 100 MW\_fuel max capacity, Min load 0.33 Efficiency 0.4, efficiency at min load 0.35



| V_online | V_gen,<br>max | Eff.<br>(%) | V_gen,<br>min | Eff.<br>(%) |
|----------|---------------|-------------|---------------|-------------|
| 100 MW   | 100 MW        | 40%         | 33 MW         | 35%         |
| 60 MW    | 60 MW         | 40%         | 20 MW         | 35%         |
| 33 MW    | 33 MW         | 40%         | 11 MW         | 35%         |
| 0 MW     | 0 MW          | -           | 0 MW          | -           |

## **Activating ramp constraint: related parameters**

- User activates **ramp constraint** in input data, sheet master (use\_ramps = 1)
- Also adds rampRoom figures to the results

|   | parameter                | value |  |
|---|--------------------------|-------|--|
|   | co2_cost                 | 10    |  |
|   | loss_of_load_penalty     | 10000 |  |
|   | loss_of_reserves_penalty | 20000 |  |
|   | lack_of_inertia_penalty  | 30000 |  |
|   | curtailment_penalty      | 20    |  |
|   | lack_of_capacity_penalty | 5000  |  |
|   | time_in_years            | 1.000 |  |
|   | time_period_duration     | 60    |  |
|   | reserve_duration         | 0.50  |  |
|   | use_capacity_margin      | 1     |  |
|   | uso_online               | 1     |  |
| < | use_ramps                | 0     |  |
|   | Use_non_synchronous      | 1     |  |
|   | use_inertia_limit        | 0     |  |
|   | mode_invest              | 0     |  |
|   | mode_dispatch            | 1     |  |
|   | print_duration           | 0     |  |
|   | print_durationRamp       | 0     |  |
|   | print_unit_results       | 0     |  |

master sheet

|   | А          | В          | С        | D               | Е                      | F                        | G            | Н            | I           | J                         | K                  | L           | М            | N                  | 0              | P            | Q              | R                | S          | Т                   | U        | ۷        | W       | X               |
|---|------------|------------|----------|-----------------|------------------------|--------------------------|--------------|--------------|-------------|---------------------------|--------------------|-------------|--------------|--------------------|----------------|--------------|----------------|------------------|------------|---------------------|----------|----------|---------|-----------------|
| 1 | unit type  | efficiency | min load | eff at min load | ramp up (p.u. per min) | ramp down (p.u. per min) | O&M cost/MWh | availability | max reserve | inertia constant (MWs/MW) | fixed cost/kW/year | inv.cost/kW | inv.cost/kWh | fixed kW/kWh ratio | conversion eff | startup cost | min uptime (h) | min downtime (h) | eff change | self dischange loss | lifetime | interest | annuity | non sunchronous |
| 2 | ST_coal    | #          | #        | #               | 0.02                   | 0.02                     | #            | #            | #           | #                         | #                  | #           |              |                    |                | #            | #              | #                |            |                     | #        | #        | #       | 0               |
| 3 | Engine_gas | #          | #        | #               | 0.20                   | 0.20                     | #            | #            | #           | #                         | #                  | #           |              |                    |                | #            | 4              |                  |            |                     | #        | #        | #       | 0               |
| 4 | CC_oil     | #          | #        | #               | 0.05                   | 0.05                     | #            | #            | #           | #                         | #                  | #           |              |                    |                | #            | 5              | 5                |            |                     | #        | #        | #       | 0               |
| 5 | ST_bio     | #          | #        | #               | 0.02                   | 0.02                     | #            | #            | #           | #                         | #                  | #           |              |                    |                | #            | 8              | 8                |            |                     | #        | #        | #       | 0               |

unit\_type sheet



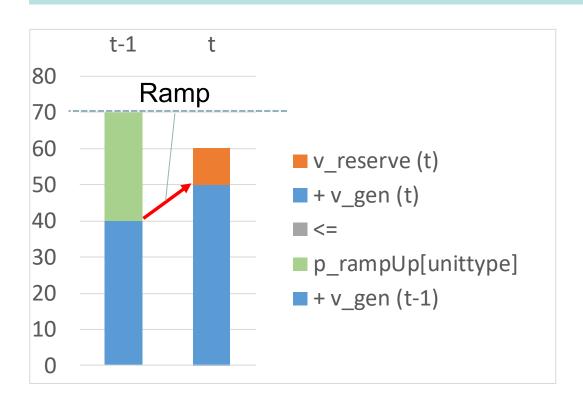
#### Unit ramp constraint:

+ reserve

+ generation

<=

+ generation in the previous time step


+ upward ramp capability

× capacity

evious time step [*v\_reserve(t-1)*] ility [unit\_type: ramp\_up (0-1)] [units: capacity + *v\_invest*]

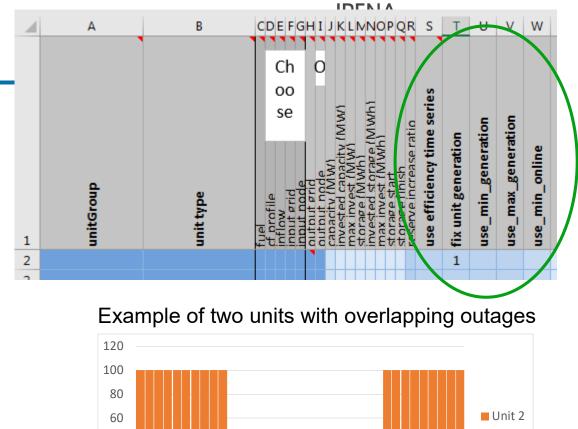
[v\_reserve(t)]

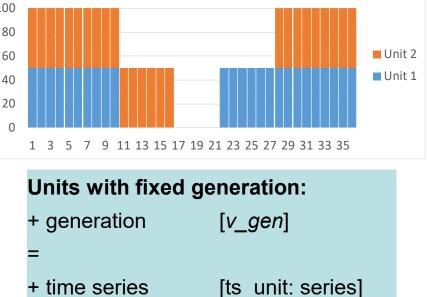
 $[v_gen(t)]$ 



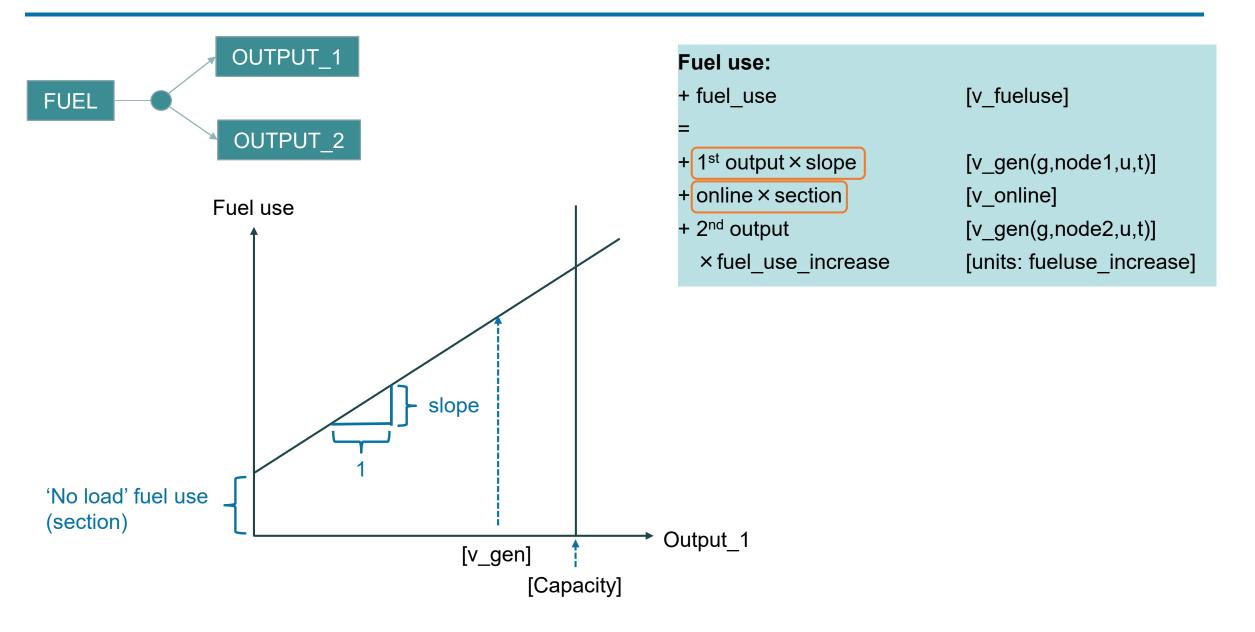
- Similar for downward ramp
- Also ramp constrained:
  - storage units
  - demand increasing units
  - conversion units
- Charging can also be ramp constrained

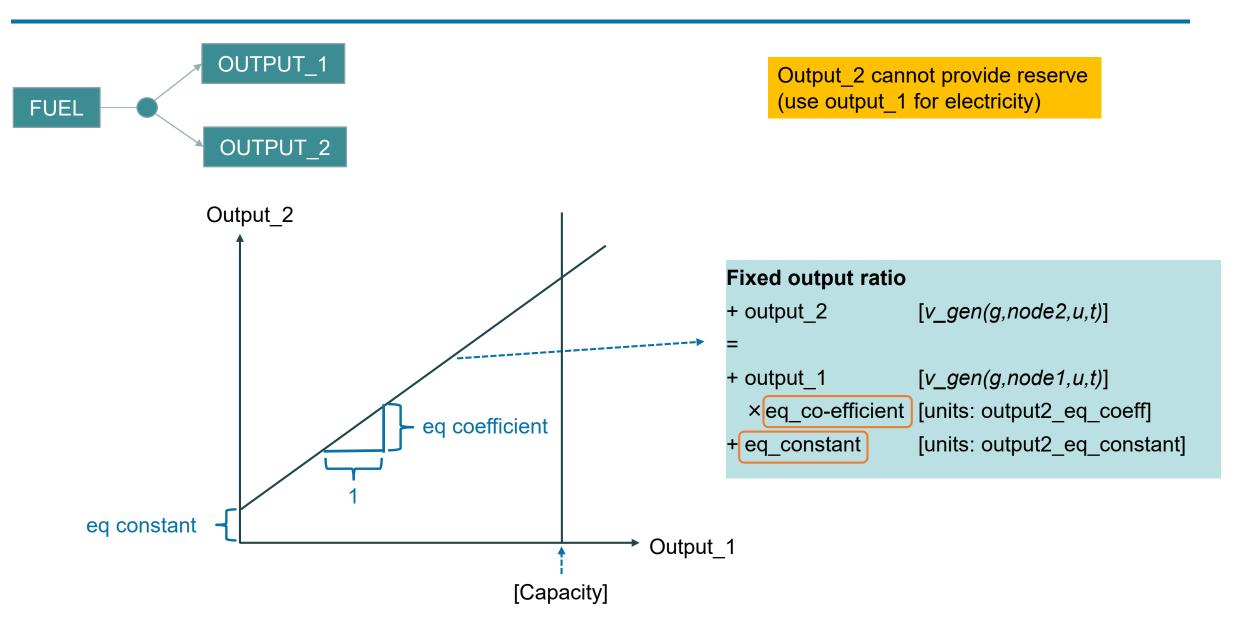
**IRENA** 


**FlexT** 


 For storage units maximum upward ramp could be from full charging to full discharging (2 ×capacity)

## **Time serie constraints for units**


#### • User can give constraints to units as time series


- Units need to be flagged to use time series in units sheet
- Time series are given in ts\_unit sheet
- Possible time series are
  - efficiency (works as efficiency at unit\_type sheet, but has separate value for each hour)
  - fix\_generation, min generation, max\_generation (these fix or limit the generation. Use values from 0-1 as a share of max geration)
  - min\_online (this sets a minimum value for unit online variable, see slide 51. Use values from 0-1.)
- The use of all these are demonstrated in template.xlsm







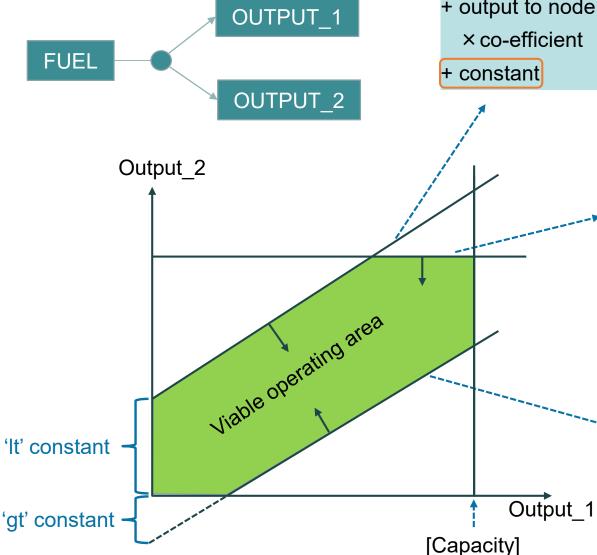




## Units with two outputs

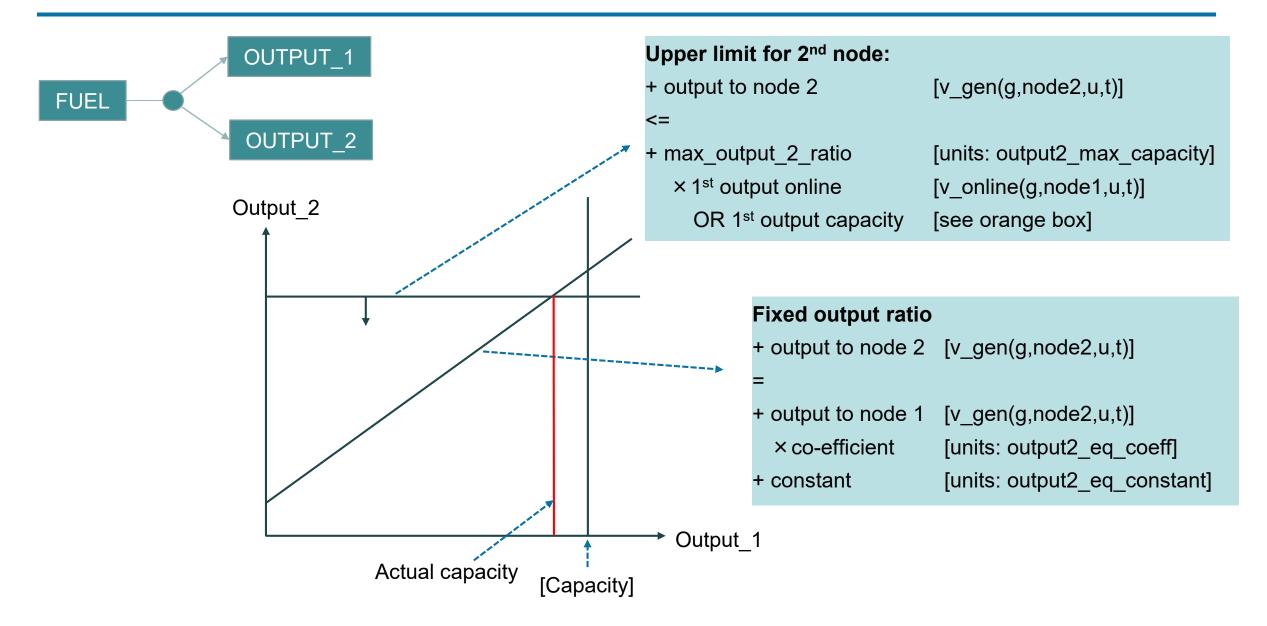
Less than output ratio + output to node 2 [v\_gen(g,node2,u,t)]

<=


# + output to node 1 [v\_gen(g,node1,u,t)] × co-efficient [units: output2\_lt\_coeff + constant [units: output2\_lt\_constant]

Upper limit for 2<sup>nd</sup> output: + output to node 2 <=

+ ratio between outputs × 1<sup>st</sup> output online OR 1<sup>st</sup> output capacity [v\_gen(g,node2,u,t)]


[units: output2\_max\_capacity] [v\_online(g,node1,u,t)] [see orange box]

#### Greater than output ratio + output to node 2 [v\_gen(g,node2,u,t)] >= + output to node 1 [v\_gen(g,node1,u,t)] × co-efficient [units: output2\_gt\_coeff] + constant [units: output2\_gt\_constant]



## Units with two outputs

#### 



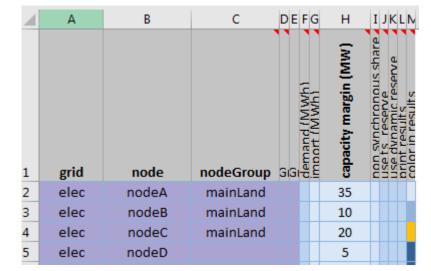


## **Invest Run**

Back to contents

#### **Invest run**



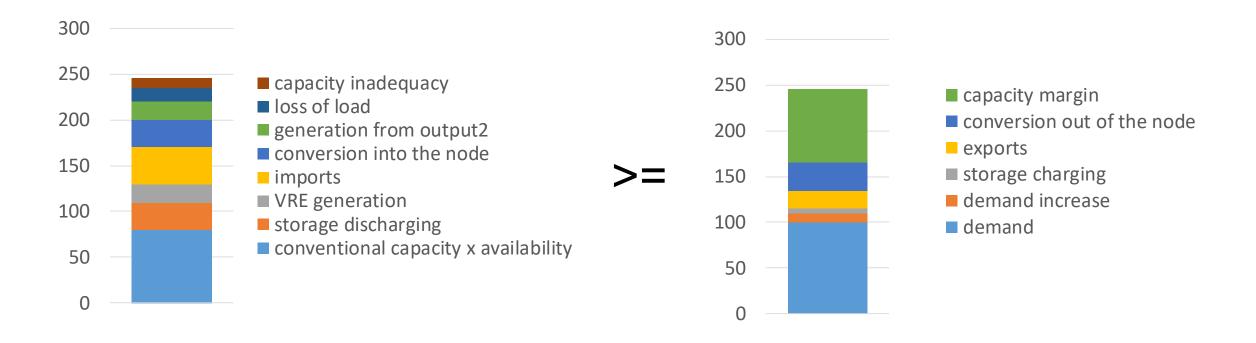

- Invest mode is activated from master sheet in input data (mode\_invest = 1)
  - Both invest and dispatch can be active, or only either
- Capacity margin approximates reserves during invest run

| parameter                | value |
|--------------------------|-------|
| co2_cost                 | 10    |
| loss_of_load_penalty     | 10000 |
| loss_of_reserves_penalty | 20000 |
| lack_of_inertia_penalty  | 30000 |
| curtailment_penalty      | 20    |
| lack_of_capacity_penalty | 5000  |
| time_in_years            | 1.000 |
| time_period_duration     | 60    |
| reserve_duration         | 0.50  |
| use_capacity_margin      | 1     |
| use_online               | 1     |
| use_ramps                | 0     |
| use_non_synchronous      | 1     |
| use_inertia_limit        | 0     |
| mode_invest              | 0     |
| mode_dispatch            | 1     |
| print_duration           | 0     |
| print_durationRamp       | 0     |
| print_unit_results       | 0     |

 A
 B
 CDEFFG

 Image: state of the state o

nodeGroup sheet




#### gridNode sheet

master sheet

## **Capacity margin**

For each time step:

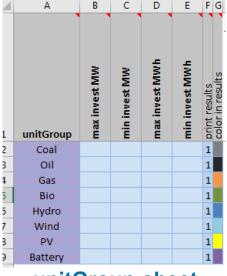


**IRENA** 

**FlexT** 

Capacity margin can be applied either to nodes or to groups of nodes

## **Limits for capacity investment**


#### 

#### FlexTool allows following definitions to investments

- Max invest (MW or MWh) maximum investment allowed, works only with invest mode
- Min invest (MW or MWh) minimum investment required, works only with invest mode, unit groups only
- Invested capacity (MW) predefined invested capacity, works both dispatch and invest mode
- Invested storage (MWh) predefined invested storage, works both dispatch and invest mode
- Define **fixed kW/kWh ratio** for storages in unitType sheet
  - Two of the three should be provided: [inv. cost MW], [inv. cost MWh] and [fixed kW/kWh ratio]

#### **Multiple constraints**

- User can define multiple investment constraints
- FlexTool will always follow all constraints
- However, conflicting constraints will make the model infeasible (crash)
- See slide comments for examples



| Inp     O       Inp | ĺ | А                          | В                                   | CDEFGHIJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K               | L         | Μ       | N               | 0         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|---------|-----------------|-----------|
| CoalST_coaloaleled100OilCC_oiloileled50BioST_biomasseled0Windwind/ind_Aeled0PVPVPVeled0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                            |                                     | Inp O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |           |         |                 |           |
| Oil         CC_oil         bil         eled         50           Bio         ST_bio         mass         eled         0           Wind         vind_A         eled         0           PV         PV         PV         eled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | ¢.                         | a                                   | d<br>dd<br>(MW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d capacity (MW) | est (MW)  | (MWh)   | d storage (MWh) | est (MWh) |
| Bio     ST_bio     mass     eled       Wind     wind     /ind_A     eled     0       PV     PV     PV     eled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | unitGro                    | unit typ                            | fuel<br>cf profil<br>inflow<br>input cr<br>output<br>output<br>capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | investe         | max inv   | storage | investe         | max inv   |
| Wind         wind         /ind_A         eled         0           PV         PV         PV         eled         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |                            |                                     | fuel<br>cf profil<br>inflow<br>input cr<br>output<br>output<br>capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | investe         |           | storage | investe         | max inv   |
| PV PV PV eled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | Coal                       | ST_coal                             | pala output<br>capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | investe         | 100       | storage | investe         | max inv   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | Coal<br>Oil                | ST_coal<br>CC_oil                   | pale eleq<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>output<br>capacity<br>outp | investe         | 100       | storage | investe         | max inv   |
| Battery battery eled 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | Coal<br>Oil<br>Bio         | ST_coal<br>CC_oil<br>ST_bio         | oal eled<br>bil eled<br>bil eled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | investe         | 100<br>50 | storage | investe         | max inv   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | Coal<br>Oil<br>Bio<br>Wind | ST_coal<br>CC_oil<br>ST_bio<br>wind | oal eled<br>mass eled<br>rind_A eled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | investe         | 100<br>50 | storage | investe         | max inv   |

units sheet

|   | А           | В     | С          | DE                                        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HIJKLNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---|-------------|-------|------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L | grid        | node1 | node2      | can rightward (MWA)<br>can leftward (MMA) | invested capacity (MW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | max invest (MW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Inss<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Interne |
| 2 | elec        | nodeA | nodeB      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3 | elec        | nodeB | nodeC      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | L<br>2<br>3 |       | elec nodeA | elec nodeA nodeB                          | Bepou vapou value | appou vapou vapo vapou v | 0     max invest (MW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### nodeNode sheet

#### unitGroup sheet





Back to contents

## **Objective function: minimise costs**



| <ul> <li>Each model run minimises costs of</li> </ul> |  |
|-------------------------------------------------------|--|
| following equation:                                   |  |
|                                                       |  |

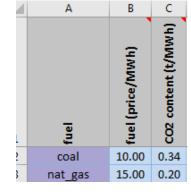
+ **fixed** operation and maintenance costs + variable operation and maintenance costs + fuel costs of units Operation -+ CO2 emission costs + start-up costs + penalty cost for loss of load + penalty cost for insufficient upward reserves + penalty cost for insufficient capacity margin Penalties -+ penalty cost for curtailment of VRE + penalty cost for insufficient inertia + unit investment costs + storage investment costs Investment -+ transmission line investment costs

|   | <ul> <li>+ pre-existing capacity [units: capacity]</li> <li>+ forced new capacity [units: invested capacity]</li> </ul> |
|---|-------------------------------------------------------------------------------------------------------------------------|
|   | + invested new capacity [v_invest   v_investTransfer]                                                                   |
|   | [capacity × unittype: fixed_cost]                                                                                       |
|   | [ <i>v_gen</i>   <i>v_charge</i>   <i>v_convert</i> × unittype: O&M_cost]                                               |
|   | [ <i>v_fuelUse</i> × fuel: fuel_price]                                                                                  |
|   | [ <i>v_fuelUse</i> × fuel: CO2_content × master: CO2_cost]                                                              |
|   | [ <i>v_startup</i> × unittype: startup_cost]                                                                            |
|   | [ <i>v_slack</i> × master: loss_of_load_penalty]                                                                        |
| 5 | [ <i>v_reserveSlack</i> × master: loss_of_reserves_penalty]                                                             |
|   | [ <i>v_capacitySlack</i> × master: lack_of_capacity_penalty]                                                            |
|   | [ <i>v_curtail</i> × master: curtailment_penalty]                                                                       |
|   | [ <i>v_inertiaSlack</i> × master: lack_of_inertia_penalty]                                                              |
|   | [ <i>v_invest</i> × unit_type: inv.cost_kW × annuity]                                                                   |
|   | [ <i>v_investStorage</i> × unit_type: inv.cost_kWh × annuity                                                            |
|   | [ <i>v_investTransfer</i> × nodeNode: inv.cost_kW × annuity]                                                            |

Capacity

### **Cost parameters**




• Cost parameters are defined in:

|    | А          | В          | С        | D               | E                      | F    | G            | H            | IJ                             | К                  | L           | М            | Ν                   | CP             | QR                                 | ST                                | U        | V        | W       | х               |
|----|------------|------------|----------|-----------------|------------------------|------|--------------|--------------|--------------------------------|--------------------|-------------|--------------|---------------------|----------------|------------------------------------|-----------------------------------|----------|----------|---------|-----------------|
| 1  | unittype   | efficiency | min load | eff at min load | ramp up (p.u. per min) | down | O&M cost/MWh | availability | Inertia constant riviwis/iviwi | fixed cost/kW/year | inv.cost/kW | inv.cost/kWh | tixed kW//kWh ratio | conversion eff | min uptime (h)<br>min downtime (h) | eft charge<br>selt discharge loss | lifetime | interest | annuity | non svnchronous |
| 2  | ST_coal    | #          | #        |                 |                        | #    | 4.0          | Π            |                                | 50                 | 1200        |              |                     |                |                                    |                                   | 30       | 0.08     | 0.089   | 0               |
| 3  | Engine_gas | #          | #        | #               | #                      | #    | 2.0          |              |                                | 30                 | 600         |              |                     |                |                                    |                                   | 30       | 0.08     | 0.089   | 0               |
| 4  | CC_oil     | #          | #        | #               | #                      | #    | 2.5          |              |                                | 50                 | 800         |              |                     |                |                                    |                                   | 30       | 0.08     | 0.089   | 0               |
| 5  | ST_bio     | #          | #        | #               | #                      | #    | 4.0          | Ц            |                                | 50                 | 1200        |              |                     |                |                                    |                                   | 30       | 0.08     | 0.089   | 0               |
| 6  | Hydro_RES  | #          |          |                 | #                      | #    |              |              |                                | 20                 |             |              |                     |                |                                    |                                   | 30       | 0.08     | 0.089   | 0               |
| 7  | Hydro_ROR  | #          |          |                 | #                      | #    |              |              | Ц                              | 20                 |             |              |                     |                |                                    |                                   | 30       | 0.08     | 0.089   | 0               |
| 8  | wind       | #          |          |                 | #                      | #    |              |              |                                | 20                 | 1300        |              |                     |                |                                    |                                   | 30       | 0.08     | 0.089   | 1               |
| 9  | PV         | #          |          |                 | #                      | #    |              |              |                                | 10                 | 700         |              |                     |                |                                    |                                   | 30       | 0.08     | 0.089   | 1               |
| LO | battery    | #          |          |                 | #                      | #    |              |              |                                | 20                 |             | 80           |                     |                |                                    |                                   | 15       | 0.08     | 0.117   | 1               |

**unitType sheet** Operation + investment

| А                        | В                                                                                                                           |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                          |                                                                                                                             |
| parameter                | value                                                                                                                       |
| co2_cost                 | 10                                                                                                                          |
| loss_of_load_penalty     | 10000                                                                                                                       |
| loss_of_reserves_penalty | 20000                                                                                                                       |
| lack_of_inertia_penalty  | 30000                                                                                                                       |
| curtailment_penalty      | 20                                                                                                                          |
| lack_of_capacity_penalty | 5000                                                                                                                        |
|                          | parameter<br>co2_cost<br>loss_of_load_penalty<br>loss_of_reserves_penalty<br>lack_of_inertia_penalty<br>curtailment_penalty |

#### master sheet Penalties



# **fuel sheet** Operation

| 1 | Α    | В     | С     | DE                                      | FGH                                               | Ι           | J        | К        | L       | MN                       |
|---|------|-------|-------|-----------------------------------------|---------------------------------------------------|-------------|----------|----------|---------|--------------------------|
|   | grid | node1 | node2 | cap.rightward (MW)<br>cap.leftward (MW) | invested capacity (MW)<br>max invest (MW)<br>loss | inv.cost/kW | lifetime | interest | annuity | HVDC<br>color in results |
|   | elec | nodeA | nodeB |                                         |                                                   | 100         | 50       | 0.08     | 0.082   | 0                        |
|   | elec | nodeB | nodeC |                                         |                                                   | 100         | 50       | 0.08     | 0.082   | 0                        |

**nodeNode sheet** Operation + Investment



#### • Fixed operation costs:

• Fixed O&M

## • Variable operation costs:

- Variable O&M, fuel, CO<sub>2</sub> cost, startup costs
- Scaled to annual level if running less than full year

## Scaling to annual costs is done based

on

- Amount of active timesteps
- Total number of timesteps
- Time\_in\_years parameter at master sheet

#### Fixed costs = + capacity x fixed O&M

Capacity = + pre-existing capacity [units: capacity] + forced new capacity [units: invested\_

+ invested new capacity

[units: capacity] [units: invested\_capacity] [v\_invest | v\_investTransfer]

#### Variable costs =

- (+ generation x O&M cost
- + fuel use x fuel price
- + charge x O&M cost
- + fuel use x fuel CO2 content x CO2 cost
- + number of start ups x capacity x startup cost
- ) \* scaled to annual

## **Penalties costs**



- The model tries to avoid very high penalty values
  - Seeing loss of load in result is a sign of significant flexibility issue
  - Curtailment penalty should be much lower than loss of load penalty. Default value is 20, but it could also be close to zero.

|   | А                        | В     |
|---|--------------------------|-------|
|   |                          |       |
| 1 | parameter                | value |
| 2 | co2_cost                 | 10    |
| 3 | loss_of_load_penalty     | 10000 |
| 4 | loss_of_reserves_penalty | 20000 |
| 5 | lack_of_inertia_penalty  | 30000 |
| 6 | curtailment_penalty      | 20    |
| 7 | lack_of_capacity_penalty | 5000  |

#### Penalties =

- + penalty cost for loss of load
- + penalty cost for **insufficient upward reserves**
- + penalty cost for **insufficient capacity margin**
- + penalty cost for curtailment of VRE
- + penalty cost for insufficient inertia

[v\_slack × master: loss\_of\_load\_penalty]
[v\_reserveSlack × master: loss\_of\_reserves\_penalty]
[v\_capacitySlack × master: lack\_of\_capacity\_penalty]
[v\_curtail × master: curtailment\_penalty]
[v\_inertiaSlack × master: lack\_of\_inertia\_penalty]



#### In the [unit\_type] sheet:

| costs<br>] × [unit_type: inv.cost_kW × annuity]<br>ent costs<br>Storage ] × [unit_type: inv.cost_kWh × annuity]<br>e investment costs<br>Transfer ] × [nodeNode: inv.cost_kW × annuity] | unit type     | BITICI PRAN<br>PERTA UNUMUNITE HAVMINI | TANTA SARATAT ININIE ININIE | fixed cost/kW/year | inv.cost/kW | inv.cost/kWh | fixed kW/kWh ratio | Conversion of the conversion o | lifetime | interest | annuity |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------|-----------------------------|--------------------|-------------|--------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|---------|--|
|                                                                                                                                                                                         | ST_coal       |                                        |                             | 50                 | 1200        |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30       | 0.08     | 0.089   |  |
|                                                                                                                                                                                         | Engine_gas    |                                        |                             | 30                 | 600         |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30       | 0.08     | 0.089   |  |
|                                                                                                                                                                                         | CC_oil        |                                        |                             | 50                 | 800         |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30       | 0.08     | 0.089   |  |
|                                                                                                                                                                                         | Engine_diesel |                                        |                             | 30                 | 700         |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30       | 0.08     | 0.089   |  |
|                                                                                                                                                                                         | Hydro_RES     |                                        |                             | 20                 |             |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30       | 0.08     | 0.089   |  |
|                                                                                                                                                                                         | Hydro_ROR     |                                        |                             | 20                 |             |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30       | 0.08     | 0.089   |  |
|                                                                                                                                                                                         | wind          |                                        |                             | 20                 | 1300        |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30       | 0.08     | 0.089   |  |
|                                                                                                                                                                                         | PV            |                                        |                             | 10                 | 700         |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30       | 0.08     | 0.089   |  |
|                                                                                                                                                                                         | battery       |                                        |                             | 20                 |             | 80           | 1.000              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15       | 0.08     | 0.117   |  |
|                                                                                                                                                                                         | pumpHydro     |                                        |                             | 20                 | 2500        |              | 0.020              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30       | 0.08     | 0.089   |  |

#### In objective fund

+ unit investment c [v\_invest] + storage investme [v\_investS + transmission line

[v\_investT



## More information

Back to contents

## **More information**

More info from FlexTool methodology report

POWER SYSTEM FLEXIBILITY FOR THE ENERGY TRANSITION

PART 1: OVERVIEW FOR POLICY MAKERS





FLEXIBILIDAD DEL SISTEMA ELÉCTRICO PARA LA TRANSICIÓN ENERGÉTICA

PARTE 1:

**Spanish** 

PANORAMA GENERAL PARA LOS ENCARGADOS DE FORMULAR POLÍTICAS



IRENA FlexTool Support: <u>Flextool@irena.org</u>







www.twitter.com/irena



www.facebook.com/irena.org



www.instagram.com/irenaimages



www.flickr.com/photos/irenaimages



www.youtube.com/user/irenaorg