

International Renewable Energy Agency

Corporate Sourcing of Renewables IRENA Cost Analysis

Elizabeth Press Director, Planning and Programme Support

Clean Energy Ministerial Preparatory Meeting 15 March 2016

All results are PRELIMINARY and subject to change

Final report to be released in June 2016

Costs and economics of renewables are central

Ability to scale beyond high margin corporates critical to ambition

Campaign needs to reach SME

RE business case: Cost data and analysis brings transparency

Note all images in this presentation copyright of Shutterstock or NREL

Power generation database

15000 utility-scale projects, 9000 with LCOE data

New renewable power technologies: Rapidly maturing

Note: each circle represents a utility-scale project, centre of circle is LCOE value and diameter of circle the project size

PPAs show costs are decreasing

Projects in a wide range of technologies and locations are being offered at very low long-term contract prices

Today's record low PPA prices are tomorrows average

Renewables: The cost effective solution

International Penewable Energy Agency

Note: each circle represents a utility-scale project, centre of circle is LCOE value and diameter of circle the project size

Costs will continue to fall for solar and wind power technologies to 2025

Large cost differentials

Continued technology innovation

Growing scale of markets

Policy framework critical to unlocking largest savings

SOLAR PHOTOVOLTAICS

Utility scale PV total system costs and expected cost reductions by 2025

Large average cost reduction potential

BoS dominates potential

Not widely appreciated by policy makers

PV Module costs to 2025

Largest cost reductions from polysilicon production and cell-to-

Solar PV: BoS costs to 2025

BoS costs for utility-scale solar PV plant could fall by

between 65% and 71% between 2015 and 2025.

Policies key to BoS cost reductions

Factor 3 difference between average BoS utility-scale costs in most competitive to least competitive market!

ONSHORE WIND

Onshore wind

The cost of onshore wind farms will continue to fall

International Renewable Energy Agency

- 83- Global weighted average
 14 investment cots declined by two thirds:
 - USD 4766/kW to USD 1623/kW

Drivers Increased economies of scale

- Broader market (100+ countries)
- Greater competition in VC
- Technology innovation
- Avg. turbine capacity:+ 170%
 - Avg. Hub height: +48%
 - Avg. rotor diam.: +108%

Onshore wind: LCOE

Capacity factors have doubled due to technology improvements and have caused the LCOE to fall faster than installed costs

Onshore wind: LCOE

LCOE reductions are ongoing and new technology improvements are continuously deployed

Capacity Factor

Improved blade design Pitch and yaw control Taller towers Larger capacity turbines Higher hubs

Larger rotor diameters

Investment cost USD/kW

LCOE (wider adoption of technology improvements)

decline by **20-30%** by 2025

Contribution to LCOE reduction potential to 2025

OFFSHORE WIND

Offshore wind: Installed costs

There are incremental opportunities to reduce capital costs by 2025 across the entire

wind farm, from interconnection to project development

Projected installed cost reductions for offshore wind, 2015 to 2025

Offshore wind: LCOE

Though the technology is still in its infancy (12GW end 2015), next generation

offshore projects could experience LCOE decreases of 30% to 40% by 2025

CONCENTRATING SOLAR POWER

CSP: a set of technologies

- Deployment is in its infancy (~5 GW)
- Cost reduction potential is good. IRENA analysis is focusing on parabolic trough (PT) and solar tower (ST)
- Solar towers have greater cost reduction potential with higher operating temperatures and lower cost thermal energy storage
- Cheap thermal energy storage allows dispatchable power -> potentially more valuable generation (particularly in high RE scenarios)

Concentrating solar power

Deployment in its infancy!

CAPEX could decline by one-third by 2025

The solar field

By 2025 CAPEX for the solar field could decrease by 23% for

parabolic through (PT) and by 27 % solar tower (ST) technologies

assembly procedures

Concentrating solar power

technologies will decrease about 35%

Main driver	Lower capital investment costs
Output 2015- 2025	Assuming medium irradiance (DNI = 2550 kWh/m2) PT electricity output: +7.6% ST electricity output: +8.4%
LCOE	2015: USD 15-19/kWh in 2015 2025: USD 0.09/kWh to USD 0.12/kWh for PT USD 0.08/kWh to USD 0.11/kWh for ST

Available online

Reports, presentations, events, high-res charts

www.irena.org/costs

LCOE ranges and averages

www.irena.org/resource

Additional functionality and data detail coming 2015 to REsource **Upcoming cost analysis: 2016/17**

IRENA PV parity indicators Global onshore wind learning curve Cost of RE for stationary applications RE power cost reduction potentials RE and financing costs Solar PV costs in Africa Historical RE power generation investment

Renewable power generation cost updates 2016 and 2017

