Grid Stability with High Share of Renewables - Transforming Small Island Power Systems

Presenter: Gayathri Nair, Grid Integration team

TUESDAY, 18 FEBRUARY 2020 • 10:00 – 10:30 CET
Grid Integration – What we do?

Assist Member States and stakeholders in addressing key questions on integration of Renewable Energy/Variable Renewable Energy:

- Technical constraints in the power system for integrating VRE
- The enablers and advanced technologies
- Hosting capacity of the existing power system
- Resource diversity
- Pathway to 100% renewable power system
- Improving power system resilience
Grid studies to date

- Antigua and Barbuda
 - Island of Antigua (2015)

- Cook Islands
 - Island of Aitutaki (2015)

- Samoa (independent state)
 - Island of Upolu (2014, 2016)

- Palau
 - Island of Palau (2013)

- Vanuatu
 - Island of Espiritu Santo (2018)

- Fiji
 - Island of Viti Levu (2019)

- Dominican Republic
 - National power grid (2019)

- Tonga
 - Nine islands (ongoing)

- Mozambique
 - Two asynchronous systems (ongoing)
Grid Integration – Transforming Small-Island Power Systems

Highlights

• the expected challenges associated with Variable renewable energy (VRE) integration in Small Island Developing States (SIDs);
• the VRE integration planning required to overcome technical challenges,
• the technical studies needed to analyse and quantify such challenges, and how to carry out these studies;
• the solutions required to overcome VRE integration challenges.

Transformation of the SIDS power systems - The strategy

- Policy targets
- Roadmaps
 - Strategic planning
 - Investigations and planning
- Technical
- Financial
- Institutional

Supported by technical planning studies

Implement

Reviews and adjustments

- 0% VRE
- 10% VRE
- 20%
- 30%
- 40%
- 50%
- 60%
- 70%
- 80%
- 90%
- 100%

Low
- Medium
- High

#IRENAinsights
VRE Integration and why we need grid assessment

System Specific Challenges

• Limited primary resource
• Uncertainty in demand growth
• Small size of the system
• Compliance with environmental constraints

VRE Challenges

• Non-synchronous- affects frequency and voltage response and control
• Location constrained- needs more transmission capacity
• Uncertainty- needs more flexibility
• Variability-affects firm capacity and therefore needs more flexibility and
Technical studies for VRE Integration in the different planning time frames

Expansion Planning: long/mid-term
- Load and Generation Balancing studies
 - Generation adequacy
 - Sizing of operating reserves
 - Generation scheduling

Operational Planning: short term
- Network Studies
 - Static network analysis
 - System stability analysis
 - Special network analysis
 - Load flow
 - Static security
 - Short-circuit studies
 - Transient Frequency and Voltage
 - Defence plans
 - Grid connection studies
Solutions for better integration of VRE-Infrastructure investments and Operational Measures

- Diversification of VRE installations
- Flexible generating units
- Energy storage systems
- Grid Reinforcements
- Distribution automation and smart grid technologies
- Interconnection with neighboring countries
- Demand response programs
- Enhanced generation dispatch and control
- Enhanced defense plans
- Automatic power controller and network monitoring
- Short term VRE forecast
Grid Integration – Grid study for the Island of Viti Levu, Fiji

Achievable generation mix

- Diesel: 100 MW
- Hydropower: 130 MW
- Distributed solar PV: 100 MW
- Utility-scale solar PV: 25 MW

Technical studies conducted

Feeder level:
- Instantaneous and sequential power flow analysis
- Short-circuit analysis.

System level:
- N-1 contingency analysis;
- Transient stability study;
- Frequency stability study; and
- Voltage stability study.

Recommendations

- Grid reinforcement
- Fault ride through of PV systems
- Curtailment and grid code
- Corrective measures

#IRENAinsights
Grid Integration – Grid study for the Island of Espiritu Santo, Vanuatu

Dispatch at Peak Demand

- **2016**
 - Diesel (1.6 MW): 71%
 - Hydropower (0.6 MW): 29%

- **2030**
 - Diesel (n/a): 0%
 - Hydropower (existing): 17%
 - Hydropower (new): 8%
 - Utility-scale PV (1.4 MW): 40%
 - DPV (1.2 MW): 35%

Achievable dispatch at peak demand

Renewable Shares (%) Achievable By 2030

- No major enablers: 84%
- Highest renewables: 98%
- Lowest cost case: 87%
- Base case: 39%

Technical studies conducted

- Frequency stability analysis
- Voltage stability
- Transient stability analysis
- Contingency analysis

Recommendations

- Installation of batteries/storage
- Diesel UPS
- Solar PV
- Hybrid control system

#IRENAinsights
Grid Integration – Grid study for Dominican Republic

Technical studies conducted:
- Frequency stability analysis
- Voltage stability
- Transient stability analysis
- Contingency analysis
- Peak demand
- Mean demand
- Low demand

Recommendations:
- Wind \(\uparrow 36\% \)
- Gas \(\downarrow 25\% \)
- Solar \(\uparrow 24\% \)
- Coal \(\downarrow 15\% \)
- Fuel \(\downarrow 26\% \)

vs. 2018 base year

Snapshots considered for study:
- 2020 (17% Renewable)
- 2025 (25% Renewable)
- 2030 (45% Renewable)

Battery storage capacity
Grid reinforcement
Parallel transmission lines
Corrective measures

#IRENAinsights
Questions & Answers

grid.integration@irena.org

Please use the ‘Questions’ feature on the webinar panel
Next webinars

- **TUESDAY, 3 March 2020 • 10:00 – 10:30 CET**
 “Planning for the renewable future: improving use and development of long-term energy scenarios”

- **TUESDAY, 17 March 2020 • 10:00 – 10:30 CET**
 “Innovations for 100% renewable power: a systemic approach”
Thank you!

innovationday@irena.org