ENERGY PROFILE

Cameroon

COUNTRY INDICATORS AND SDGS

Total Energy Supply (TES)

<table>
<thead>
<tr>
<th>Year</th>
<th>Non-renewable (TJ)</th>
<th>Renewable (TJ)</th>
<th>Total (TJ)</th>
<th>Renewable share (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>106 408</td>
<td>277 654</td>
<td>384 062</td>
<td>72</td>
</tr>
<tr>
<td>2020</td>
<td>105 096</td>
<td>316 341</td>
<td>421 437</td>
<td>75</td>
</tr>
</tbody>
</table>

Growth in TES

<table>
<thead>
<tr>
<th>Period</th>
<th>Non-renewable (%)</th>
<th>Renewable (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-20</td>
<td>-1.2</td>
<td>+13.9</td>
<td>+9.7</td>
</tr>
<tr>
<td>2019-20</td>
<td>+6.3</td>
<td>+2.4</td>
<td>+3.4</td>
</tr>
</tbody>
</table>

Primary energy trade

<table>
<thead>
<tr>
<th>Year</th>
<th>Imports (TJ)</th>
<th>Exports (TJ)</th>
<th>Net trade (TJ)</th>
<th>Imports (% of supply)</th>
<th>Exports (% of production)</th>
<th>Energy self-sufficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>89 816</td>
<td>196 893</td>
<td>107 077</td>
<td>23</td>
<td>40</td>
<td>129</td>
</tr>
<tr>
<td>2020</td>
<td>73 359</td>
<td>206 073</td>
<td>132 714</td>
<td>17</td>
<td>37</td>
<td>132</td>
</tr>
</tbody>
</table>

Total energy supply in 2020

- Oil: 18%
- Gas: 7%
- Nuclear: 75%
- Coal + others: 0.2%
- Renewables: 0.0%

Renewable energy supply in 2020

- Hydro/marine: 94%
- Wind: 0%
- Solar: 4%
- Bioenergy: 0%
- Geothermal: 0%
Electricity Generation

<table>
<thead>
<tr>
<th></th>
<th>GWh</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-renewable</td>
<td>1 336</td>
<td>21</td>
</tr>
<tr>
<td>Renewable</td>
<td>5 110</td>
<td>79</td>
</tr>
<tr>
<td>Hydro and marine</td>
<td>5 090</td>
<td>79</td>
</tr>
<tr>
<td>Solar</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Wind</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bioenergy</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Geothermal</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>6 446</td>
<td>100</td>
</tr>
</tbody>
</table>

Energy and Emissions

Energy-related CO₂ emissions by sector

- **Elec. & heat**: [Diagram showing CO₂ emissions over years]
- **Other Industrial**: [Diagram showing CO₂ emissions over years]
- **Transport**: [Diagram showing CO₂ emissions over years]
- **Other**: [Diagram showing CO₂ emissions over years]
- **Buildings**: [Diagram showing CO₂ emissions over years]

Avoided emissions from renewable elec. & heat

- **Emitted CO₂**: [Diagram showing avoided emissions over years]
- **RE Avoided CO₂**: [Diagram showing avoided emissions over years]

CO₂ emission factor for elec. & heat generation

- **CMR**: [Graph showing CO₂ emissions relative to other regions]
- **Africa**: [Graph showing CO₂ emissions relative to other regions]
- **World**: [Graph showing CO₂ emissions relative to other regions]

Electricity Generation Trend

- **Fossil fuels**: [Diagram showing percentage contribution over years]
- **Nuclear**: [Diagram showing percentage contribution over years]
- **Other Non-RE**: [Diagram showing percentage contribution over years]
- **Hydro/marine**: [Diagram showing percentage contribution over years]
- **Wind**: [Diagram showing percentage contribution over years]
- **Solar**: [Diagram showing percentage contribution over years]
- **Bioenergy**: [Diagram showing percentage contribution over years]
- **Geothermal**: [Diagram showing percentage contribution over years]
- **Renewable share**: [Diagram showing percentage contribution over years]

Avoided emissions based on fossil fuel mix used for power

- **2016**: 0
- **2017**: 2
- **2018**: 4
- **2019**: 6
- **2020**: 8
- **2021**: 10

LATEST POLICIES, PROGRAMMES AND LEGISLATION

1. Cost of gas and transport fuel subsidy - 2022
2.
3.
4.
5.

Per capita electricity generation (kWh)

- **Total**: [Diagram showing per capita electricity generation over years]
- **Renewable**: [Diagram showing per capita electricity generation over years]
Distribution of solar potential

- World
- Cameroon

Distribution of wind potential

- World
- Cameroon

Biomass potential: net primary production

- Proportion of land area

- Annual generation per unit of installed PV capacity (MWh/kWp)

- Wind power density at 100m height (W/m²)

Indicators of renewable resource potential

Solar PV: Solar resource potential has been divided into seven classes, each representing a range of annual PV output per unit of capacity (kWh/kWp/yr). The bar chart shows the proportion of a country's land area in each of these classes and the global distribution of land area across the classes (for comparison).

Onshore wind: Potential wind power density (W/m²) is shown in the seven classes used by NREL, measured at a height of 100m. The bar chart shows the distribution of the country's land area in each of these classes compared to the global distribution of wind resources. Areas in the third class or above are considered to be a good wind resource.

Biomass: Net primary production (NPP) is the amount of carbon fixed by plants and accumulated as biomass each year. It is a basic measure of biomass productivity. The chart shows the average NPP in the country (tC/ha/yr), compared to the global average NPP of 3-4 tonnes of carbon/ha/yr.

Sources: IRENA statistics, plus data from the following sources: UN SDG Database (original sources: WHO; World Bank; IEA; IRENA; and UNSD); UN World Population Prospects; UNSD Energy Balances; UN COMTRADE; World Bank World Development Indicators; EDGAR; REN21 Global Status Report; IEA–IRENA Joint Policies and Measures Database; IRENA Global Atlas; and World Bank Global Solar Atlas and Global Wind Atlas.

Additional notes: Capacity per capita and public investments SDGs only apply to developing areas. Energy self-sufficiency has been defined as total primary energy production divided by total primary energy supply. Energy trade includes all commodities. Capacity utilisation is calculated as annual generation divided by year-end capacity x 8,760h/year. Avoided emissions from renewable power is calculated as renewable generation divided by fossil fuel generation multiplied by reported emissions from the power sector. This assumes that, if renewable power had not existed, fossil fuels would be used in its place to generate the same amount of power and using the same mix of fossil fuels. In countries and years where no fossil fuel generation occurs, an average fossil fuel emission factor has been used to calculate the avoided emissions.

These profiles have been produced to provide an overview of developments in renewable energy in different countries and areas. The IRENA statistics team would welcome comments and feedback on its structure and content, which can be sent to statistics@irena.org.

Last updated on: 8th August, 2023