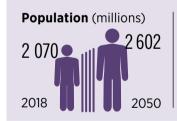
ENERGY TRANSFORMATION

REST OF ASIA

Regional analysis covers 16 countries:

West Asia

- Armenia
- Azerbaijan
- Turkey


Central Asia:

- Kazakhstan
- Kyrgyz Republic
- Tajikistan
- Turkmenistan
- Uzbekistan

South Asia:

- Afghanistan
- Bangladesh
- Bhutan
- India
- Maldives
- Nepal
- Pakistan
- Sri Lanka

STATUS/CHARACTERISTICS AND NEEDS:

Current: 27% of global population,

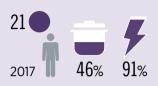
mainly in India (68%) followed by Pakistan (11%),

Bangladesh (8%) and Turkey (4%).

2050 Average 0.7% per year increase to 2 602 outlook: million, or 28% of global population.

IRENA analysis based on E3ME.

GDP per capita (thousand USD 2015)



Current: Well below the global average (10.9).

2050 Rapid development; outlook: PES: CAGR = 4.9%

IRENA analysis based on E3ME.

Energy consumption (GJ/capita) and energy access (%)

Energy consumption per capita:

Current: well below the global average (51 GJ/year)..

Electricity access:

Over 91% (2017) up from 75% (2010), Still, 178 million people in the region lack electricity access (IEA, IRENA, UNSD. WB. WHO, 2019).

Clean cooking access:

Available to less than 50% of region's population (2017), with especially large access deficit in India (IEA, IRENA, UNSD, WB, WHO, 2019).

Source: Access to electricity, 2017 values (World Bank Group, 2019a), access to clean cooking, 2016 values (World Bank Group, 2019b), TFEC, 2017 values (IEA, 2019).

Fossil fuel net import

Current West and South Asian countries are net importers, status: while Central Asian countries are net exporters

(mainly oil and gas).

2050 outlook: Rising air pollution and resource challenges: Large untapped renewable energy potential.

PES: The total generation (est. 7514 TWh) represents 23% of overall renewable power potential.

Note: Current status, IRENA analysis based on proportion of net imports of fossil fuels in TPES, 2017 values (IEA, 2019). 2050 outlook, IRENA analysis and potential based on Deng et al. (2015).

Energy-intensive industries (% in global

consumption) 8%

2017

Current status:

Accounts for 14% of global energy demand for iron and steel and around 9% for non-ferrous metals and

non-metallic minerals industries.

2050 outlook:

Increasing output of iron and steel, metals,

chemicals and petrochemicals; India and Pakistan

require concentrated effort and specific

decarbonisation solutions.

Source: IRENA analysis based on 2017 values (IEA, 2019).

Energy-related CO₂ emissions per capita

(tCO₂/capita)

2018

2050

Recent:

Region's annual emissions: 3.8 Gt (2018).

11% of global energy-related CO₂ emissions.

2050 outlook:

PES: Almost doubling to 7.2 Gt with enabling policies.

CO₂ emissions from transport are poised to triple to 1.4 Gt propelled by population growth and urbanization.

Note: 2050 values based on IRENA analysis and historical data based on Global Carbon Atlas (2019).

Urban air quality (%)

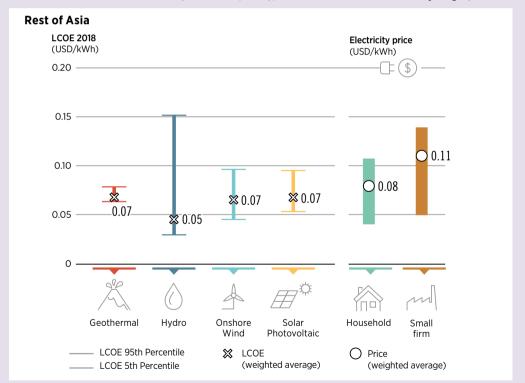
Good • Moderate • Unhealthy

South Asia currently has the world's most toxic air, with 18 of the planet's 20 most-polluted cities found in India (15), Pakistan (2) and Bangladesh (1).

Record-high air pollution has periodically shut down regular activities and caused serious health issues in Delhi, India.

IRENA analysis based on PM 2.5 concentration, 2016 and 2017 values (WHO, 2019).

Electricity prices and renewables costs


Electricity price:

Among the lowest in the world, only in MENA is lower. Similar to Rest of Europe.

Renewables cost and auctions:

Onshore wind: Similar to G20 average levels of USD 0.05/kWh (weighted average LCOE); Solar PV: Below G20 average (USD 0.096/kWh);

India: Solar PV cost-competitive compared to thermal power generation (USD 0.068/kWh for coal and USD 0.093/kWh for combined-cycle gas).

LCOE based on IRENA (2019a) and electricity prices based on Global Petrol Prices (2019).

Note: The LCOE data is for projects commissioned in 2018. Real weighted average cost of capital (WACC) is 7.5% for OECD countries and China and 10% for the rest of the world.

ENERGY TRANSFORMATION: KEY BENEFITS

REDUCED EMISSIONS

- Clean local air
- **▶** Lower CO₂ output
- Improved health and well-being

ENERGY INDEPENDENCE AND ACCESS

- Distributed renewable power to isolated communities
- Diversified energy supply
- Improved clean cooking access

3

ECONOMIC AND SUSTAINABLE DEVELOPMENT

- Economic growth and poverty alleviation
- Modern energy job creation and skills development
- Transformative health impacts
- Active role for communities

ENERGY TRANSFORMATION ROADMAP TO 2050

			Where	we are h	eading	Where we need to be			
Rest of	of Asia	2017	2030 (PES)	2040 (PES)	2050 (PES)	2030 (TES)	2040 (TES)	2050 (TES)	
Energy (EJ)								
Supply (TPES)	64	89	107	124	77	82	86	
Consump	tion (TFEC)	42	61	75	87	51	54	55	
Renewak	oles shares (modern)								
Supply (T	PES)	8%	17%	19%	22%	27%	41%	58%	
Consump	otion (TFEC)	8%	14%	17%	21%	24%	40%	59%	
Power ge	eneration	18%	37%	44%	51%	52%	68%	81%	
Electricit	y share in final energy co	nsumpti	on						
End-use	consumption	18%	21%	24%	26%	26%	37%	47%	
Industry		21%	15%	15%	15%	19%	25%	32%	
Transpor	t	1%	6%	7%	9%	18%	37%	52%	
Buildings		20%	45%	57%	66%	51%	63%	75%	
Renewab	Renewable installed capacity (GW)								
Bioenerg	У	12	30	32	35	39	45	55	
Hydropo	wer	110	149	175	185	154	202	240	
Solar PV		24	216	430	733	314	706	1072	
Wind		41	162	254	404	223	374	541	
Biofuels									
Liquid bio (billions o	ofuels of litres per year)	1	11	29	38	14	53	81	
CO ₂ emis	sions (energy-related)								
Annual le	vel (Gt CO ₂ /yr)	3.5	5.4	6.4	7.2	3.8	3.1	2	
Reductio	n vs. today	NA	53%	81%	105%	8%	-11%	-43%	

Rest of Asia

Where we are heading Planned Energy Scenario 2016 - 2050 (PES) Where we need to be Transforming Energy Scenario 2016-2050 (TES)

Energy system investments (average annual, 2016-50) USD billion/year

Power	122	151
- Renewable	46	84
- Non-renewable	30	16
- Power grids and system flexibility	45	52
Industry (RE + EE)	22	33
Transport (electrification + EE)	37	70
Buildings (RE + EE)	78	114
Biofuel supply	2	12
Renewable hydrogen – electrolysers	0.2	3

The findings in this report consider targets and developments as of April 2019. The wind and solar PV capacities in the Transforming Energy Scenario in 2030 in this report are slightly higher than the estimates presented in IRENA's reports (IRENA, 2019b; 2019c) which consider developments as of the third quarter of 2019.

SOCIO-ECONOMIC OUTLOOK TO 2050

Rest of Asia	2019e	2030	2050	
Population (thousands) region-wide	2 088 441	2 326 499	2 601 942	
GDP (USD 2015)				
GDP (million): PES	5 699 443	11 092 911	31609299	
GDP (million): TES	5 892 431	11194938	31994075	
GDP changes (million): TES vs. PES	192 988	102 027	384776	
GDP changes (%): TES vs. PES	3.4	0.9	1.2	
Per capita GDP (thousand): PES	2.7	4.8	12.1	
Per capita GDP (thousand): TES	2.8	4.8	12.3	

Employment

Economy-wide employment (thousands)

Employment: PES	1020 945	1251416	1562 473
Employment: TES	1021164	1250 735	1561263
Employment changes: TES vs. PES	219	(681)	(1210)
Employment changes (%): TES vs. PES	0.02%	-0.05%	-0.08%

Rest of Asia	2017	2030 (PES)	2050 (PES)	2030 (TES)	2050 (TES)	
Energy sector jobs (thousands)						
Nuclear power	60	103	86	91	65	
Fossil fuels	3 424	6 170	6 621	5163	4 495	
Renewables	1422	2846	3 577	3 795	5164	
Energy efficiency	2 615	2 596	1034	3 925	1815	
Power grids and energy flexibility	1654	2 483	3 0 0 9	2 551	3 220	
Total	9 175	14 198	14 326	15 523	14 759	
Energy jobs in economy-wide employment (%)		1.1%	0.9%	1.2%	0.9%	
Renewable energy jobs (thousands	;) 					
Bioenergy	238	860	756	1243	1491	
Solar	340	941	1687	1422	2504	
Hydropower	760	821	798	821	774	
Wind	80	220	333	305	386	
Geothermal	4	4	4	5	9	
Ocean	0	0	0	0	0	
Total	1422	2846	3 577	3 795	5164	
Renewable energy jobs in energy-sector employment (%)		20.0%	25.0%	24.4%	35.0%	
Job differential in 2050 (thousands) TES vs. PES						
Economy-wide					-1210	
Changes in conventional energy (A)					-2147	
Changes in transition related technologies (B)					2 5 7 9	

432

Net jobs (A+B)

▶ Jobs in 2050: TES / ● Rest of Asia

Technology jobs (thousands)		Segment value chain (thousands)		Occupational requirements (thousands)	
Solar PV	1819	Construction & installation	1580	Workers and technicians	2 191
Solar water heaters (SWH)	519	Manufacturing	195	Experts	250
Onshore wind	295	Operation and maintenance	958	Engineers and higher degrees	253
Offshore wind	91	Biofuel supply	-	Marketing and administrative	39
Geothermal	9				
Total	2 733		2 733		2 733

Welfare improvement (%):

TES vs. PES	2030	2050

Indicator

Economic	0.1	0.2
Social	7.7	11.3
Environmental	2.0	4.2
Total	9.8	15.7

REFERENCES:

Deng, Y., Haigh, M., Pouwels, W., Ramaekers, L., Brandsma, R., Schimschar, S., Grözinger, J. & de Jager, D. (2015), *Quantifying a realistic, worldwide wind and solar electricity supply*, Global Environmental Change 31, 239-52, https://doi.org/10.1016/j.gloenvcha.2015.01.005.

 $Global\ Carbon\ Atlas\ (2019),\ \textit{Global\ Carbon\ Atlas}-\textit{CO}_2\ emissions, \ https://doi.org/10.5194/essd-11-1675-2019.$

Global Petrol Prices (2019), *Electricity prices around the world*, www.globalpetrolprices.com/electricity_prices/ (accessed 5 March 2020).

IEA (2019), IEA Beyond 20/20 - 2019 edition, International Energy Agency, Paris.

IEA, IRENA, UNSD, WB, WHO (2019), Tracking SDG 7: The Energy Progress Report 2019, Washington DC.

IRENA (2019a), Renewable Cost Database, 2019.

IRENA (2019b), Future of solar photovoltaic - Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

IRENA (2019c), Future of wind – Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi.

WHO (2019), WHO Global Ambient Air Quality Database (update 2018), World Health Organization, www.who.int/airpollution/data/cities/en/ (accessed 5 March 2020).

World Bank Group (2019a), Access to electricity (% of population), World Bank Group.

World Bank Group (2019b), Access to clean fuels and technologies for cooking (% of population), World Bank Group.