ANNEX

METHODOLOGY

DIFFERENT MEASURES OF COST

Cost can be measured in a number of different ways, and each way of accounting for the cost of power generation brings its own insights. The costs that can be examined include equipment costs (e.g. PV modules), financing costs, total installed cost, fixed and variable operating and maintenance costs (O&M), fuel costs (if any) and the levelised cost of energy (LCOE).

The analysis of costs can be very detailed, but for comparison purposes and transparency, the approach used here is a simplified one. This allows greater scrutiny of the underlying data and assumptions, improves transparency and confidence in the analysis, and also facilitates the comparison of costs by country or region for the same technologies in order to identify the key drivers in any differences.

The three indicators that have been selected are:

» Equipment cost (factory gate, FOB, and delivered at site);
» Total installed project cost, including fixed financing costs38;
» Capacity factor by project; and
» The levelised cost of electricity, LCOE.

The analysis in this paper focuses on estimating the costs of renewables from the perspective of private investors, whether they are a state-owned electricity generation utility, an independent power producer or an individual or community looking to invest in small-scale renewables. The analysis excludes the impact of government incentives or subsidies, system balancing costs associated with variable renewables and any system-wide cost-savings from the merit order effect39, except where explicitly discussed at the end of Chapter 2. Furthermore, the analysis does not take into account any CO₂ pricing, nor the benefits of renewables in reducing other externalities (e.g. reduced local air pollution or contamination of the natural environment, except where explicitly discussed at the end of Chapter 2). Similarly, the benefits of renewables being insulated from volatile fossil fuel prices have not been quantified. These issues are important, but are covered by other programmes of work at IRENA.

Clear definitions of the technology categories are provided, where this is relevant, to ensure that cost comparisons are robust and provide useful insights (e.g. off-grid PV vs. utility-scale PV). Similarly, it is important to differentiate between the functionality and/or qualities of the renewable power generation technologies being investigated (e.g. concentrating solar power with and without thermal energy storage). It is important to ensure that system boundaries for costs are clearly set and that the available data are directly comparable. Other issues can also be important, such as cost allocation rules for combined heat and power plants, and grid connection costs.

The data used for the comparisons in this paper come from a variety of sources, such as business journals, industry associations, consultancies, governments, auctions and tenders. Every effort has been made to ensure that these data are directly comparable and are for the same system boundaries. Where this is not the case, the data have been corrected to a common basis using the best available data or assumptions. It is planned that this data will be complemented by detailed surveys of real world project data in forthcoming work by IRENA.

38 Banks or other financial institutions will often charge a fee, such as a percentage of the total funds sought, to arrange the debt financing of a project. These costs are often reported separately under project development costs.

39 See EWEA, Wind Energy and Electricity Prices, April 2010 for a discussion.
An important point is that, although this paper tries to examine costs, strictly speaking, the data available are actually prices, and are often not even true market average prices, but price indicators. The difference between costs and prices is determined by the amount above, or below, the normal profit that would be seen in a competitive market. The rapid growth of renewables markets from a small base means that the market for renewable power generation technologies is rarely well-balanced. As a result, prices can rise significantly above costs in the short term if supply is not expanding as fast as demand, while in times of excess supply, losses can occur and prices may be below production costs. This makes analysing the cost of renewable power generation technologies challenging and every effort has been made to indicate whether current equipment costs are above or below their long-term trend.

The cost of equipment at the factory gate is often available from market surveys or from other sources. A key difficulty is often reconciling different data sources to identify why data for the same period differ. For example, the balance of capital costs in total project costs tends to vary even more widely than power generation equipment costs, as it is often based on significant local content, which depends on the cost structure of where the project is being developed. Total installed costs can therefore vary significantly by project, country and region depending on a wide range of factors.

Levelised cost of electricity generation

The LCOE of renewable energy technologies varies by technology, country and project, based on the renewable energy resource, capital and operating costs, and the efficiency/performance of the technology. The approach used in the analysis presented here is based on a discounted cash flow (DCF) analysis. This method of calculating the cost of renewable energy technologies is based on discounting financial flows (annual, quarterly or monthly) to a common basis, taking into consideration the time value of money. Given the capital-intensive nature of most renewable power generation technologies and the fact that fuel costs are low, or often zero, the weighted average cost of capital (WACC), often also referred to as the discount rate, used to evaluate the project has a critical impact on the LCOE.

There are many potential trade-offs to be considered when developing an LCOE modelling approach. The approach taken here is relatively simplistic, given the fact that the model needs to be applied to a wide range of technologies in different countries and regions.

However, this has the additional advantage that the analysis is transparent and easy to understand. In addition, more detailed LCOE analyses result in a significantly higher overhead in terms of the granularity of assumptions required. This often gives the impression of
greater accuracy, but when it is not possible to robustly populate the model with assumptions, or to differentiate assumptions based on real world data, then the “accuracy” of the approach can be misleading.

The formula used for calculating the LCOE of renewable energy technologies is:

\[
\text{LCOE} = \frac{\sum_{t=1}^{n} \frac{I_t + M_t + F_t}{(1+r)^t}}{\sum_{t=1}^{n} \frac{E_t}{(1+r)^t}}
\]

Where:

- \(LCOE\) = the average lifetime levelised cost of electricity generation;
- \(I_t\) = investment expenditures in the year \(t\);
- \(M_t\) = operations and maintenance expenditures in the year \(t\);
- \(F_t\) = fuel expenditures in the year \(t\);
- \(E_t\) = electricity generation in the year \(t\);
- \(r\) = discount rate; and
- \(n\) = life of the system.

All costs presented in this paper are real 2014 USD; that is to say, after inflation has been taken into account unless otherwise stated. The LCOE is the price of electricity required for a project where revenues would equal costs, including making a return on the capital invested equal to the discount rate. An electricity price above this would yield a greater return on capital, while a price below it would yield a lower return on capital, or even a loss.

As already mentioned, although different cost measures are useful in different situations, the LCOE of renewable energy technologies is a widely used measure by which renewable energy technologies can be evaluated for modelling or policy development. Similarly, more detailed DCF approaches taking into account taxation, subsidies and other incentives are used by renewable energy project developers to assess the profitability of real world projects.

40 An analysis based on nominal values with specific inflation assumptions for each of the cost components is beyond the scope of this analysis. Project developers will develop their own specific cash-flow models to identify the profitability of a project from their perspective.
REGIONAL GROUPINGS

» Asia: Afghanistan; Bangladesh; Bhutan; Brunei Darussalam; Cambodia; China; Democratic People’s Republic of Korea; India; Indonesia; Japan; Kazakhstan; Kyrgyzstan; Lao People’s Democratic Republic; Malaysia; Maldives; Mongolia; Myanmar; Nepal; Pakistan; Philippines; Republic of Korea; Singapore; Sri Lanka; Tajikistan; Thailand; Timor-Leste; Turkmenistan; Uzbekistan; Viet Nam.

» Africa: Algeria; Angola; Benin; Botswana; Burkina Faso; Burundi; Cabo Verde; Cameroon; Central African Republic; Chad; Comoros; Congo; Côte d’Ivoire; Democratic Republic of the Congo; Djibouti; Egypt; Equatorial Guinea; Eritrea; Ethiopia; Gabon; Gambia; Ghana; Guinea; Guinea-Bissau; Kenya; Lesotho; Liberia; Libya; Madagascar; Malawi; Mali; Mauritania; Mauritius; Morocco; Mozambique; Namibia; Niger; Nigeria; Rwanda; Sao Tome and Principe; Senegal; Seychelles; Sierra Leone; Somalia; South Africa; South Sudan; Sudan; Swaziland; Togo; Tunisia; Uganda; United Republic of Tanzania; Zambia; Zimbabwe.

» Central America and the Caribbean: Antigua and Barbuda; Bahamas; Barbados; Belize; Costa Rica; Cuba; Dominica; Dominican Republic; El Salvador; Grenada; Guatemala; Haiti; Honduras; Jamaica; Nicaragua; Panama; Saint Kitts and Nevis; Saint Lucia; Saint Vincent and the Grenadines; Trinidad and Tobago.

» Eurasia: Armenia; Azerbaijan; Georgia; Russian Federation; Turkey.

» Europe: Albania; Andorra; Austria; Belarus; Belgium; Bosnia and Herzegovina; Bulgaria; Croatia; Cyprus; Czech Republic; Denmark; Estonia; Finland; France; Germany; Greece; Hungary; Iceland; Ireland; Italy; Latvia; Liechtenstein; Lithuania; Luxembourg; Malta; Monaco; Montenegro; Netherlands; Norway; Poland; Portugal; Republic of Moldova; Romania; San Marino; Serbia; Slovakia; Slovenia; Spain; Sweden; Switzerland; the former Yugoslav Republic of Macedonia; Ukraine; United Kingdom of Great Britain and Northern Ireland.

» Middle East: Bahrain; Iran (Islamic Republic of); Iraq; Israel; Jordan; Kuwait; Lebanon; Oman; Qatar; Saudi Arabia; Syrian Arab Republic; United Arab Emirates; Yemen.

» North America: Canada; Mexico; United States of America.

» Oceania: Australia; Fiji; Kiribati; Marshall Islands; Micronesia (Federated States of); Nauru; New Zealand; Palau; Papua New Guinea; Samoa; Solomon Islands; Tonga; Tuvalu; Vanuatu.

» South America: Argentina; Bolivia (Plurinational State of); Brazil; Chile; Colombia; Ecuador; Guyana; Paraguay; Peru; Suriname; Uruguay; Venezuela (Bolivarian Republic of).