

CRITICAL
MATERIALS FOR
THE ENERGY
TRANSITION:

RARE EARTH ELEMENTS

TECHNICAL PAPER 2/2022
BY DOLF GIELEN AND MARTINA LYONS

Rare Earth Elements Critical Materials for the Energy Transition

BY DOLF GIELEN AND MARTINA LYON:

Agenda

PART I: Key takeaways from the Rare Earth Elements paper

PART II: Commentary from several reviewers

PART III: Q&A

Part I: Key takeaways from the Rare Earth Elements' paper

Key takeaways from the Rare Earth Elements paper

Dolf GielenDirector Innovation and Technology Centre IRENA

IRENA work to date

- IRENA Assembly January 2022 provided a mandate for Agency work on critical materials
- > To date:
 - Scoping paper together with ENEL Foundation October 2021
 - Technical paper critical materials November 2021
 - Deep dive lithium February 2022
 - Chapter <u>World Energy Transitions Outlook 2022</u> March 2022
 - Nickel editorial
 - Editorials on critical materials in <u>energy-post</u> and <u>smart-energy</u>
- In preparation:
 - Deep dive sustainable critical materials supply in Africa together with World Bank
- > This webinar:
 - Deep dive rare earth elements
- Goal: Enhance Members understanding of critical materials

Collaborative Framework & working groups

Aim: develop a set of activities to:

- support a better understanding of the role and market dynamics of critical materials to sustain the energy transition,
- facilitate discussion among the different groups,
- Establish a list of experts across Members and stakeholders, and
- assist in systematizing and disseminating knowledge.

Observatory

Collect data that help understand scarcity and potential supply shortages that may affect the energy transition in the coming decade

De-risking supply

Develop and apply strategies to de-risk supply

ESG & mining

Develop strategies to raise acceptance for new mining projects

What are we talking about today?

- REE constitute a group of 17 elements
- That are not rare, but they are hard to separate
 - The 40 largest ore exploration projects contain over 3 000 megatonnes (Mt) of inferred resources at various grades in over 15 countries
 - Only 11 mines in operation and 0.24 Mt production in 2020
- Therefore they were discovered late
- They have funny names
 - Light elements are lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium and gadolinium.
 - The heavy elements are terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium
 - Additionally scandium and yttrium
- About 40 years ago it was discovered they make great permanent magnets
 - Only 4 elements have relevance for todays permanent magnets
- These magnets are needed for generators (wind turbines) and motors (EV)

Permanent magnets

- Largely neodymium-dysprosium based, with some praseodymium and terbium
- About a third of magnet weight is REE
- Dysprosium is added for thermal stability
- Dysprosium is more scarce than neodymium, therefore more likely a bottleneck
- Innovation is aimed at more efficient use or even elimination of dysprosium
- REE free magnets are in an R&D stage
- Permanent free motors & generators exist but they have lower performance

Rare Earth Demand (2020) – 29% magnets of which around a third energy transition related – quantities are still small

REE price trends – rising prices for permanent magnet materials

PROPUOT (OVIDE)	200 DUDITYS	USD/KG							
PRODUCT (OXIDE)	(% PURITY)	2017	2018	24 DECEMBER 2021					
Scandium	99.990	4600	4 600	836					
Yttrium	99.999	3	3	11.9					
Lanthanum	99.500	2	2	2					
Cerium	99.500	2	2	1.5					
Praseodymium	99.500	65	63	140					
Neodymium	99.500	50	50	143					
Samarium	99.500	2	2	4.5					
Europium	99.990	77	53	32					
Gadolinium	99.999	37	44	76.2					
Terbium	99.990	501	455	1720					
Dysprosium	99.500	187	179	452					

REE reserves are plenty and widely distributed

COUNTRY	MINE PRODUCTION, 2020 [TONNES/YEAR]	RESERVES [TONNES]	% OF TOTAL WORLD RESERVES
China	140 000	44 000 000	38.0
Viet Nam	1000	22 000 000	19.0
Brazil	1000	21 000 000	18.1
Russia	2700	12 000 000	10.4
India	3 000	6 900 000	6.0
Australia	17 000	4100000	3.5
United States	38 000	1500 000	1.3
Greenland	-	1500 000	1.3
Tanzania	-	890 000	0.8
Canada	-	830 000	0.7
South Africa	-	790 000	0.7
Other countries	100	310 000	0.3
Myanmar	30 000	NA	NA
Madagascar	8 000	NA	NA
Thailand	2 000	NA	NA
Burundi	500	NA	NA
World Total	243 300	115 820 000	100

Todays REE mining is concentrated in China, USA and Australia

COUNTRY OR LOCALITY	2016		2017		2018	2019	2020
Australiaest	15 000		19 000		21000	20 000	17 000
Brazil	2700	rev, est	1700	est	1200	710	1000
Burundiest	-		40		620	200	500
Chinaa	105 000		105 000		120 000	132 000	140 000
India ^{est, b}	1500		1800		2900	2900	3 000
Madagascar	-		_		2000	4000	8 000
Malaysia ^{est}	1100		180		990	pm	pm
Myanmmar ^{est}	3 500		15 000		23 000	pm	pm
Russia	2700	rev	2700	rev	2700	2700	2700
Thailand ^{est,c}	1600		1300		1000	1900	2000
United Statesest	-		-		14 000	28 000	38 000
Viet Nam ^{est, c}	240	rev	220	rev	920	1300	1000
Total	133 000	rev	147 000	rev	190 000	220 000	240 000

Rare Earth Ores – mostly bastnaesite and monazite Neodymium and dysprosium come from different deposits

Radioactivity is a problem with some ore types

						•	J. 10 . J					/					
PRIMARY SOURCE	COUNTRY	LOCATION	LANTHANUM (LA)	CERIUM (CE)	PRASEODYMIUM (PR)	NEODYMIUM (ND)	SAMARIUM (SM)	EUROPIUM (EU)	GADOLINIUM (GD)	TERBIUM (TB)	DYSPROSIUM (DY)	ногміим (но)	ERBIUM (ER)	THULIUM (TM)	YTTERBIUM (YB)	ситетим (си)	YTTRIUM (Y)
		Bayan Obo, Nei Mongol Autonomous Region ^a	23.00	50.00	6.20	18.50	0.80	0.20	0.70	0.10	0.10	NA	NA	NA	NA	NA	NA
	China	Dechang, Sichuan Province ^b	35.60	43.80	4.73	13.10	1.22	0.23	0.52	0.06	0.09	0.05	0.04	0.01	0.06	NA	0.40
Bastnaesite	Clina	Maoniuping, Sichuan Province ^b	29.50	47.60	4.42	15.20	1.24	0.23	0.65	0.12	0.21	0.05	0.06	0.04	0.05	0.01	0.70
		Weishan, Shandong Province ^b	35.50	47.80	3.95	10.90	0.79	0.13	0.53	0.14	NA	NA	NA	NA	0.03	NA	0.76
	United States	Mountain Pass, CA ^c	34.00	48.80	4.20	11.70	0.79	0.13	0.21	NA	NA	NA	NA	NA	NA	NA	0.12
Loparite	Russia	Revda, Murmansk Oblast ^d	25.00	50.50	5.00	15.00	0.70	0.09	0.60	NA	0.06	0.70	0.80	0.10	0.20	0.15	1.30
	Australia	Mount Weld Central Lanthanide, Western Australia ^e	23.90	47.60	5.16	18.10	2.44	0.53	1.09	0.09	0.25	0.03	0.06	0.01	0.03	NA	0.76
Monazite	China	Nangang, Guangdong Province ^b	23.00	42.70	4.10	17.00	3.00	0.10	2.00	0.70	0.80	0.12	0.30	NA	2.40	0.14	2.40
	India	Manavalakurichi, Tamil Nadu ^f	22.00	46.00	5.50	20.00	2.50	0.02	1.20	0.06	0.18	0.02	0.01	0	0	0	0.45
		Xunwu, Jiangxi Province ^b	38.00	3.50	7.41	30.20	5.32	0.51	4.21	0.46	1.77	0.27	0.88	0.13	0.62	0.13	10.10
Rare-earth laterite	China	Xinfeng, Jiangxi Province ^b	27.30	3.23	5.62	17.60	4.54	0.93	5.96	0.68	3.71	0.74	2.48	0.27	1.13	0.21	24.30
		Longnan, Jiangxi Province ^b	2.18	<1.09	1.08	3.47	2.34	<0.37	5.96	1.13	7.48	1.60	4.26	0.06	3.34	0.47	64.90
Xenotime	China	Southeast Guangdong Province ⁹	1.20	3.00	0.60	3.50	2.20	0.20	5.00	1.20	9.10	2.60	5.60	1.30	6.00	1.80	59.30

EV motor needs – a 6-fold growth is foreseen in reference scenario, permanent magnets supply must grow accordingly

Role of wind in the electricity sector in a 1.5°C scenario

PV sector in the next three decades

- Annual additions ~ 200 GW (doubling)
- Offshore grows faster than onshore
- Today REE based generators concentrated in offshore + China

Consensus among different actors on the direction

Source: https://www.irena.org/publications/2022/Mar/World-Energy-Transitions-Outlook-2022

Wind power and REE

Expansion of wind power

- → impact on supply and demand for some REEs (neodymium, praseodymium and dysprosium)
- → REE to raise 11-26 times by 2050, after 2050 recycled metals growing role

Generators → major difference in their REE content (also speed and mass)

- Direct-drive: most use PM, are smaller and use less REE; but high-temperature superconductors
 (in offshore) can reduce REE content resulting in better performance but more R&D and further
 cost reduction needed
- **Gearbox**: some assisted by PM → medium-speed gearbox popular in onshore and offshore farms, but design less competitive in large plants due to weight and periodic maintenance
- Hybrid-drives: smaller PM → less REE than direct drive
- ➤ PM 75% of offshore wind
- > PM 52% of onshore wind

Scenarios for wind turbines with PM based generators

Offshore 75% share today, 40-80% in future

Onshore 30% share today, 40-70% share in future

Demand projections for rare earths

- Simple model for permanent magnet demand: EV sales * kg REE/EV + wind turbines * kg REE/wind turbine + other applications;
 IRENA WETO 1.5 C scenario assumptions EV & wind growth
- 3 kg magnets/EV, 750 kg magnets/MW wind (offshore + growing share for onshore)
- In practice, magnet improvements and product redesign can reduce this demand significantly this is not widely understood
- REE mining 20% neodymium or 5% dysprosium deposits; Ne and Dy supply become REE mining drivers
- Mining need may quadruple by 2030, grow slower thereafter; EV trends are critical (assumption 70 mln EV sales 2030).
- Lower rate of energy transition reduces mining growth need

[kt/yr]	2021	2030	2050
Neodymium oxide	39	151	196
Dysprosium oxide	1	4	5
REE mining need for PM materials	210	841	1085
REE mining total	240	850	1100

Innovation and R&D into PM to reduce REE dependency

Innovation:

 product innovation in shaping future REE demand deserves more attention in decisionmaking and policy design

R&D into:

- alternative motor designs but currently results in lower performance (e.g. reduced driving range)
- new PM materials with no or less REE but with adequate performance in applications where weight less critical
- **new PM processing technologies** to reduce dependency on sintered PM

Ore beneficiation, Bayan Oboo (largest REE mine worldwide)

Complex REE processing

Supply structure – risk mitigation requires diversity

- Its mining and processing that must be considered
- **Processing** (refining) is concentrated in **China**
- Permanent magnet **production** is also concentrated in China
- Need to dig deep on permanent magnets to really understand supply structures, trade statistics are not detailed enough
- Radioactivity & technological complexity & scale effects have delayed or stopped REE processing elsewhere
- Efforts to diversify the supply, processing close to mining sites
- Need for **environmentally** and **socially sustainable** supply structure

Charts show top three countries processing and refining metals.

Thank you for your attention!

CFMaterials@irena.org

C

www.instagram.com/irenaimages

www.flickr.com/photos/irenaimages

www.youtube.com/user/irenaorg

Part II: Commentary from reviewers

European Commission

Michalis Christou

Senior Expert – Energy, Security and Transport European Commission - Joint Research Centre

Overview of JRC work - here

Natural Resources Canada

Tyler Sommers

Acting Director,
Industry and Economic Analysis Division
Natural Resources Canada's Lands and Minerals Sector

Overview of NRCan work – here

ENEL Foundation

Silvia Burgos Rodríguez
Senior Researcher
ENEL Foundation

Latest joint ENEL Foundation and IRENA work: <u>Materials for the Energy Transition</u>

Rare Earth Industry Association

Nabeel A Mancheri
Secretary General
Rare Earth Industry Association (REIA)

Latest work: <u>Establishing EU-Domestic Rare Earth</u>
<u>Supply Chains for Energy Saving Applications by</u>
<u>Inclusion in Innovation Fund</u>

Global Wind Energy Council

Feng Zhao
Head of Strategy and Market Intelligence
Global Wind Energy Council (GWEC)

Latest work: <u>GWEC | GLOBAL WIND REPORT 2022</u>

Part III:

Q&A

Floor open for your questions

Thank you for your attention!

CFMaterials@irena.org

C

www.instagram.com/irenaimages

www.flickr.com/photos/irenaimages

www.youtube.com/user/irenaorg