

Think outside the box

How creativity and innovative thinking when planning power production from geothermal resource can lead to value creation beyond expectation

Porleikur Jóhannesson Mechanical Engineer Verkís consulting Engineers - Iceland

Date: Tuesday, April 24th

Typical components of geothermal flash plant

- Wellfield
 - Production and re-injection wells
 - Gathering pipes
 - Separators
 - Steam supply lines
- Power plant
 - Turbines
 - Generators
 - Condensers
- Wet Cooling tower

Single flash, direct condensing and wet cooling

Single flash, indirect condensing and wet cooling

Reykjanes plant cold end design approach

- The location of the plant
 - On the tip of Reykjanes peninsula
 - Close to the sea
- Eliminate environmental impact
- Eliminate cooling towers
- Eliminate cooling tower plume
- Eliminate use of chemicals for cooling water treatment

Use the sea for cooling!

Single flash, indirect condensing and sea water

Reykjanes geothermal power plant

- 100 MW geothermal single flash plant
- Separation pressure: 18 bara
- Condensing pressure: 0.1 bara.
- Shell and tube condensers
- Sea water cooled

Pros and cons

- Pros
 - Get rid of the cooling towers
 - No plume from cooling towers
 - 32°C warm clean sea...potential resource!
 - Architectural design opportunities
- Cons
 - More expensive
 - Non standard design
 - Sea water pumping and condenser with titanium tubes
 - Plant to be moved from the steam field, closer to the sea shore

Power streams in Reykjanes

- Steam from separators: 170 kg/s @ 210°C
 - 100 MW of electricity, if the steam is condensed @ 45°C
- Brine from separator to re-injection and disposal: 400 kg/s @ 210 °C
 - 360 MW of heat, if the brine is utilized to 20°C
- Sea water from condensers: 3200 kg/s @ 32°C
 - 160 MW of heat, if warm sea is utilized to 20°C

Utilizing the 32°C clean sea water

- At design stage:
 - Usages not defined
 - Using the sea water was not a part of the initial business plan
 - Innovating thinking by Albert Albertsson and others
 - Creating a resource from waste
- After commissioning
 - Look for potential investors to harness this new resource
 - Clean warm seawater green energy geothermal –renewable
 - An opportunity a food producer could not resist.

Stolt sea farm

- High tech aquaculture company
- Product: Sole Senegalensis
- Utilizing 2000 l/s of 32°C
- 100 MW of heat Direct use
- Up to 70 employees
- Many derived jobs

Stolt sea farm

Conclusion

- Traditional thinking in geothermal, aiming for electricity only is outdated!
- Cascaded and multiple use is the present and future
- Geothermal licenses containing sentences like:
 - "Exclusive right to use geothermal resources for the purpose of generating electric power"
 - should be avoided when licensing geothermal
- Using this clean energy in a reasonable manner to enhance quality food production should be encourage through licensing
- There is no such thing as "waste"... only resources
- To think outside the box and innovative thinking never goes out of fashion.

Integrity
Ambition
Initiative