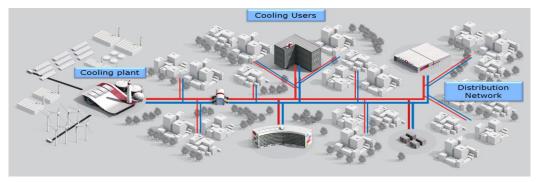


THE ROLE OF DISTRICT COOLING IN THE FUTURE SMART ENERGY SYSTEMS


Jan Eric Thorsen, Director, Danfoss Application Center

District cooling

- Along with economic growth people are putting more focus on fulfilling their comfort needs
- Cooling demand in Europe is growing
 - Commercial cooling demand is estimated to be only 27% saturated
 - Residential cooling demand is estimated to be only 5% saturated
- In USA and Japan the saturation is 80%/65% and 100%/85% respectively
- Europe is in unique position to achieve cooling in a smart, energy efficient and environmental friendly way by introducing district cooling from the beginning of the cooling trend

Not so favorable building add-ons

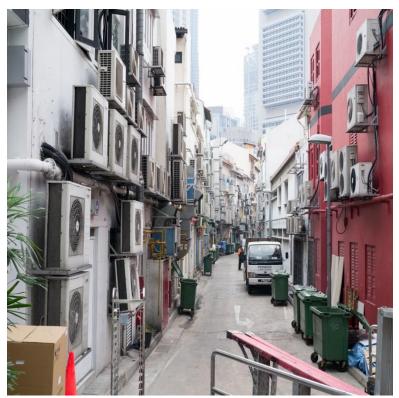


Image via **Schezar on Flickr**

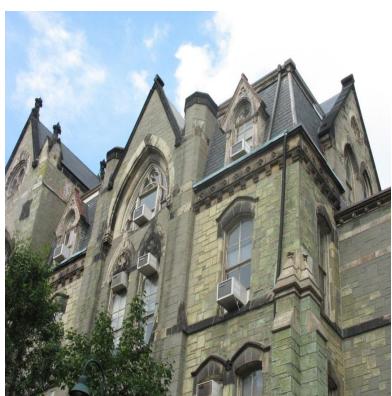
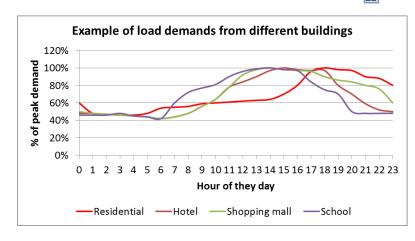
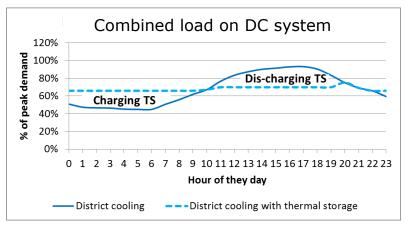


Image via Coryn Wolk on Flickr

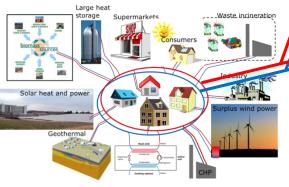


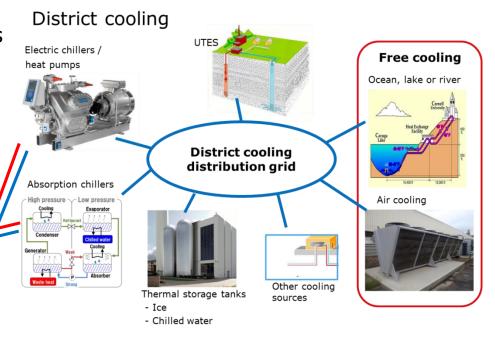


- General oversizing of equipment
 - Building level cooling units will be designed for peak load + reserve
- District cooling benefits
 - As demand varies between users the district cooling system can take advantage of it when it comes to investing in cooling capacities
 - Large thermal storages can be used to:
 - Optimize the cooling production
 - Reduce capacity investment
 - Smooth electrical load due to cooling

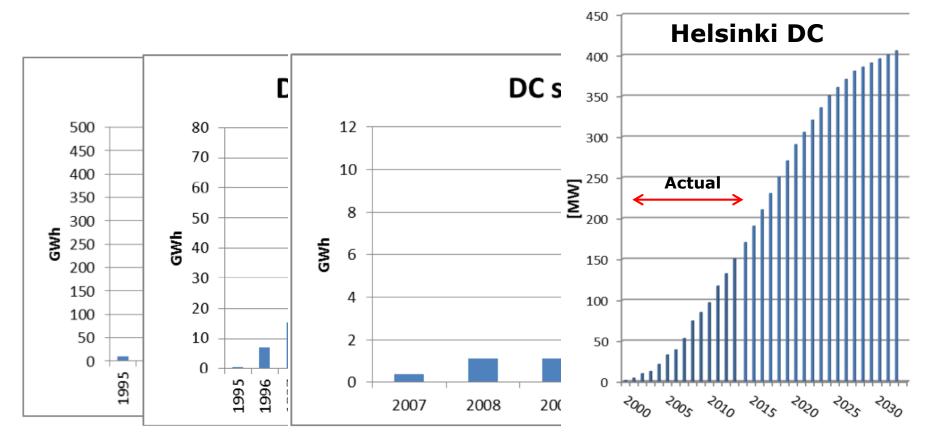
- Unnecessary energy waste
 - Building level cooling units will generally be oversized to the demand at hand
 - Units will be designed for peak load
 - Vast majority of the unit lifetime it will be operated at part load
 - Most cooling users will not have expertise to ensure optimum operation of their cooling units
 - Experience in the U.S. shows that the average fouling in water-cooled chillers results in 17% increase in energy consumption
- Cooling is the core business of District Cooling Companies
 - The DCC will ensure optimum operation of their cooling units!
 - The surplus heat from the cooling units could further be used in the district heating system!

KGH 2019 - 50 years





- Fuel lock in
 - Decentralized solutions are typically electrically driven
- District cooling is fuel independent
 - It can use any free cooling sources available
 - Heat from power generation
 - Heat from/to the district heating system
 - etc.



Typical growth of district cooling systems

 Real cases show that once district cooling system are built they tenu to grow very fast, until the market is saturated

How to map district cooling potentials?

 Ramboll consultants have developed a simple and effective way to quickly estimate the potentials for district cooling

 When the circle intersect each other they indicate the district cooling system could be economical

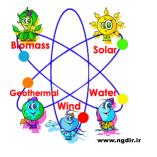
District cooling substations

 District cooling substations are build on decades of experience with district heating, while specially optimized for the low dT and the low temperatures

Common challenges with district cooling

- Large upfront investments
- Finding space for the district cooling facilities:
 - Technical components (in a building),
 - Thermal storage
 - Pipe network installation (large dimensions), especially in city centre areas
- Minimizing noise pollution of very large chillers / heat pumps
- Low temperature difference between the supply and return (low dT syndrome)
- Faster then expected system growth once initiated
- All of those challenges can be solved with good preparation work, high quality solution and focused operation

Drivers for district cooling



- Economy of scale
- Environmental friendly
- Fuel/source independent
- Higher energy efficiency

- Example of general drivers
 - Space saving at buildings
 - Flexibility for optimizing cooling production over time and cooling sources.
 - Reduces and optimizes electrical consumption
 - Reduced HFC handling
 - Silent operation at connected buildings
 - Maximum energy security

Conclusions

- Everywhere district cooling systems are installed they experience rapid growth
- District cooling can lead the way to reduce environmental impact from cooling of buildings through its
 - Source independent nature
 - High energy efficiency Large scale advantages
 - Utilization of simultaneity in the cooling demand
 - Implementation of renewable energy
 - Absorption cooling if high temperature waste heat is available
 - From existing district heating sources or power generation
- Economic optimization with thermal energy storages
 - Large accumulator tanks
 - UTES (underground thermal energy storage)
 - Pit storage
 - ATES systems

Conclusions

- District cooling can deliver the heat from the buildings to the district heating system - lowering the price of district heating
- District cooling adds to the energy security through it multi source nature
- District cooling can act as a load shifting technology for the electrical grid (Electrical grids get more fluctuating in the future)
- District cooling is the smart solution for the smart energy system of the future

Thank you for your attention

M.Sc. Jan Eric Thorsen **Director, Application Center** jet@danfoss.com

