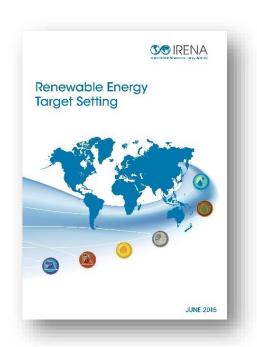
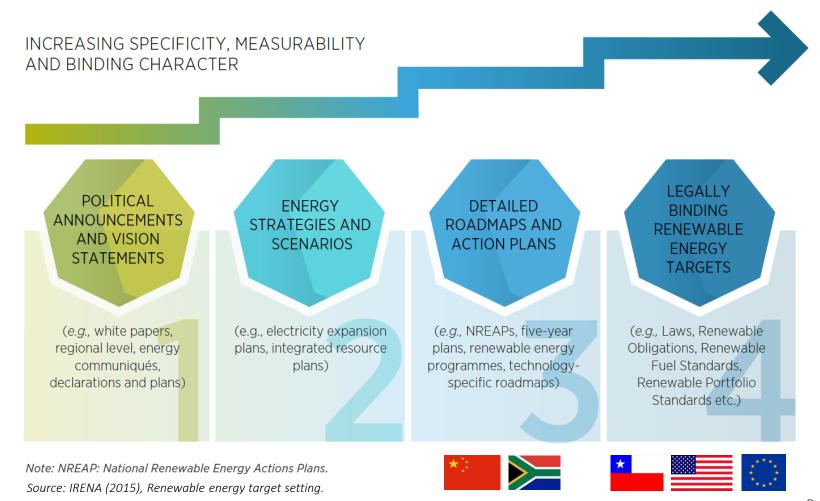


Policies to Unlock a Solar Future

Letting in the Light: Unlocking the Potential of Solar Energy

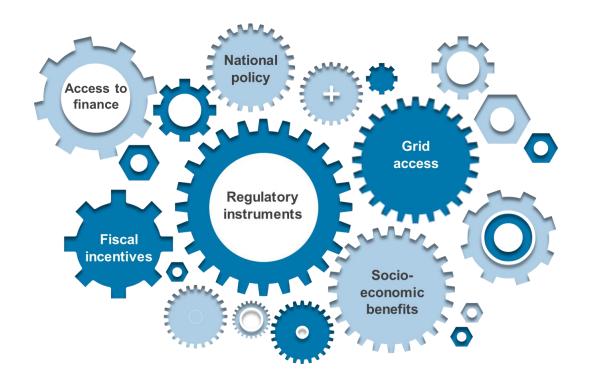

World Future Energy Summit


Abu Dhabi, 17 January 2017

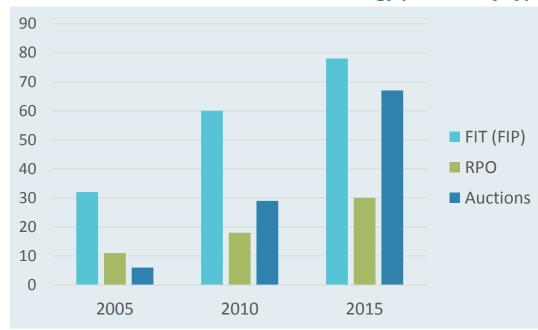
Targets in the global renewable energy landscape

173 countries have at least one type of renewable energy target – up from 43 in 2005

Types of renewable energy policies and measures



NATIONAL POLICY	REGULATORY INSTRUMENTS	FISCAL INCENTIVES	GRID ACCESS	ACCESS TO FINANCE ^a	SOCIO-ECONOMIC BENEFITS ^b
 Renewable energy target Renewable energy law/strategy Technology-specific law/programme 	 ◆ Feed-in tariff ◆ Feed-in premium ◆ Auction ◆ Quota ◆ Certificate system ◆ Net metering ◆ Mandate (e.g., blending mandate) ◆ Registry 	 ♦ VAT/ fuel tax/income tax exemption ♦ Import/export fiscal benefit ♦ National exemption of local taxes ♦ Carbon tax ♦ Accelerated depreciation ♦ Other fiscal benefits 	 Transmission discount/exemption Priority/dedicated transmission Grid access Preferential dispatch Other grid benefits 	 ◆ Currency hedging ◆ Dedicated fund ◆ Eligible fund ◆ Guarantees ◆ Pre-investment support ◆ Direct funding 	 Renewable energy in rural access/cook stove programmes Local content requirements Special environmental regulations Food and water nexus policy Social requirements


Source: IRENA (2017), REthinking Energy 2017: Accelerating the global energy transition

Trends in renewable energy support policies

Number of countries with renewable energy policies, by type

Implemented auctions and a feed-in tariff simultaneously

ns

Strengths and weaknesses of FITs, FIPs and Auctions

Strengths

Neaknesses

FITs

Limits the risks for investors also in emerging technologies

Facilitates the entry of new players in the market

Often funded by consumers and not exposed to public budget cuts

Long term security drives technological development

Costly with high deployment rates and Generation is not exposed to electricity market prices

Tariff setting and tariff adjustment process is challenging and complex

FIPs

Fixed premiums encourage generators to react to market signals

Sliding premiums or capped fixed premiums minimise the support cost

Limit risk for investors, especially premiums with floor

Flexible designs and well suited for liberalised electricity markets

Fixed premiums without floor create risk for investors

Premium setting and adjustment process is challenging and complex

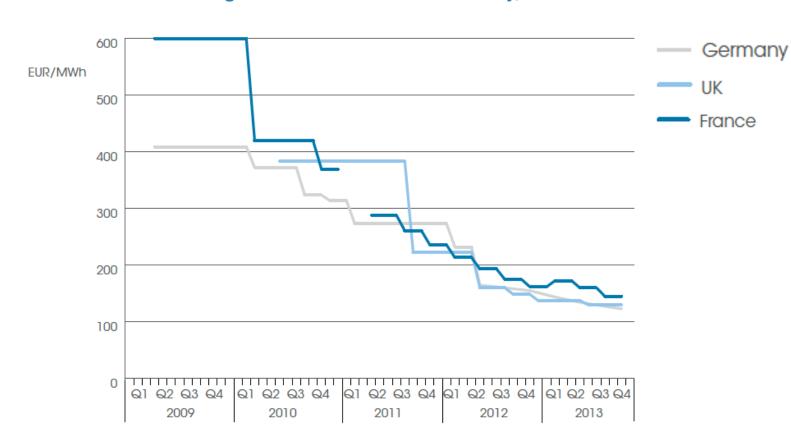
Auctions

Flexibility in the design according to conditions and objectives

Permit real price discovery

Provide greater certainty regarding prices and quantities

Enable commitments and transparency


Are associated with relatively high transaction costs for both developer and auctioneer

Risk of underbuilding and delays

Keeping pace with rapidly decreasing costs - FITs

PV FIT degression mechanism in Germany, the U.K. and France

Source: IRENA (2014), Adapting renewable energy policies to dynamic market conditions

STRENA

Adapting Renewable Energy Policies To Dynamic Market Conditions

Strengths and weaknesses of FITs, FIPs and Auctions

Strengths

FITs

Limits the risks for investors also in emerging technologies

Facilitates the entry of new players in the market

Often funded by consumers and not exposed to public budget cuts

Long term security drives technological development

Costly with high deployment rates and Generation is not exposed to electricity market prices

Tariff setting and tariff adjustment process is challenging and complex

FIPs

Fixed premiums encourage generators to react to market signals

Sliding premiums or capped fixed premiums minimise the support cost

Limit risk for investors, especially premiums with floor

Flexible designs and well suited for liberalised electricity markets

Fixed premiums without floor create risk for investors

Premium setting and adjustment process is challenging and complex

Auctions

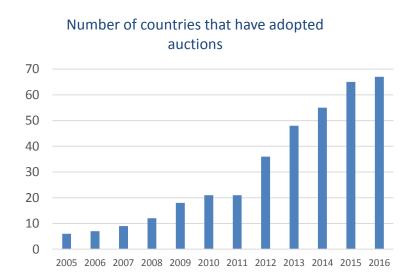
Flexibility in the design according to conditions and objectives

Permit real price discovery

Provide greater certainty regarding prices and quantities

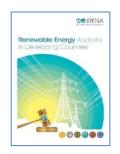
Enable commitments and transparency

Are associated with relatively high transaction costs for both developer and auctioneer


Risk of underbuilding and delays

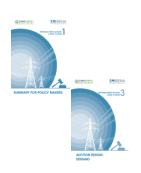
Weaknesses

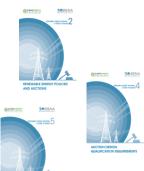
Renewable Energy Auctions

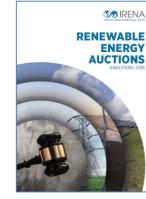


Auctions have increasingly been adopted to support renewable energy deployment

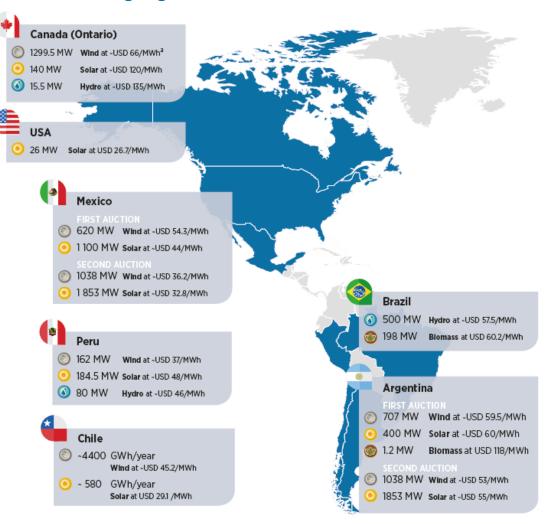
Based on REN21 Global Status Report (2005 to 2016)

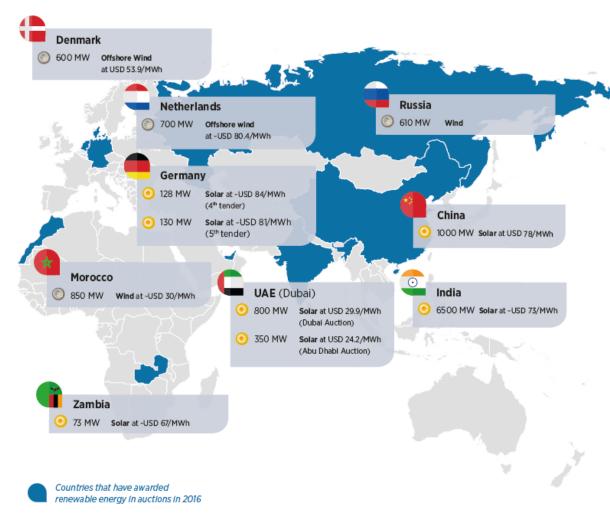



2013



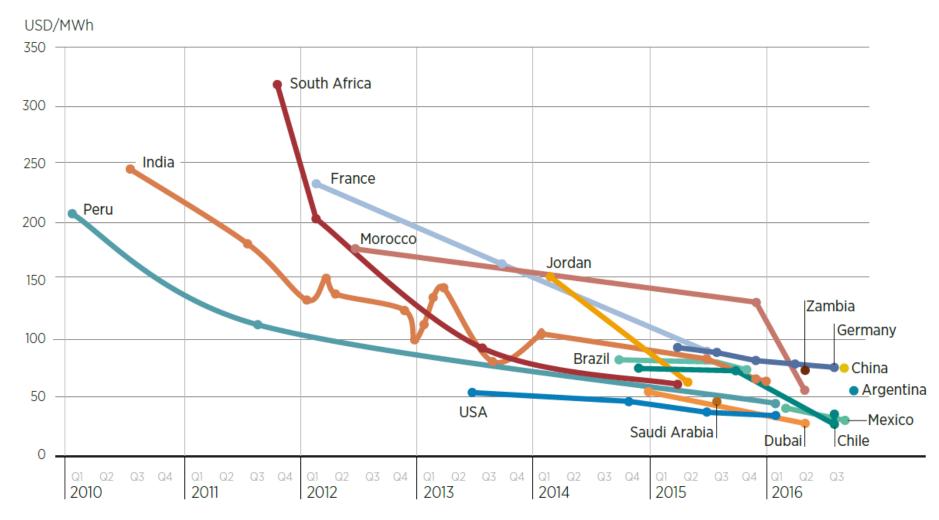
2015


2017


2014

Renewable Energy Auctions

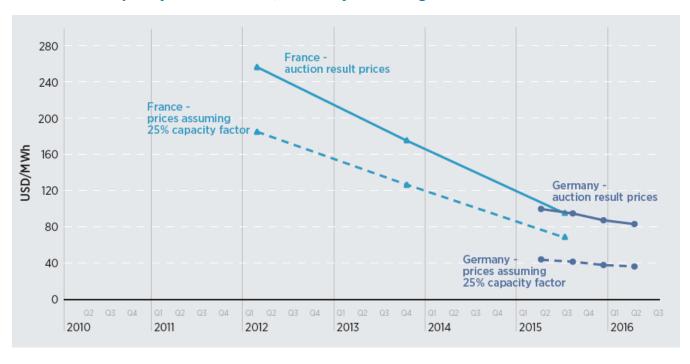
Recent highlights



Source: IRENA (2017) Renewable Energy Auctions: Analysing 2016

Price trends: solar PV auctions

Source: IRENA (2017) Renewable energy auctions: Analysing 2016



Country-specific conditions:

- Cost of finance (access to finance, ease of doing business, etc.)
- Cost of labor, cost of land, etc.
- Renewable energy resource availability.

Solar prices in France and Germany: actual results vs. adjusted result assuming a benchmark capacity factor of 25%, February 2010-August 2016

Source: based on data from BNEF, 2016.

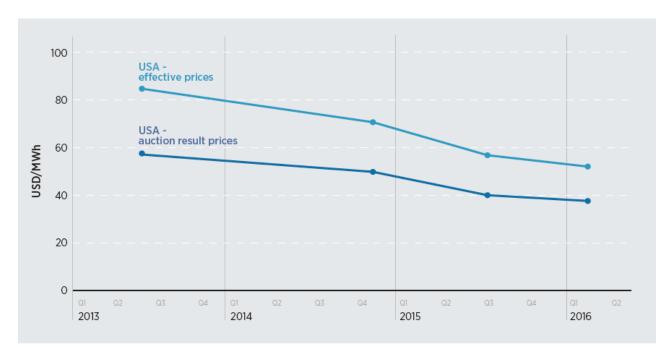
Investor confidence and learning curve:

- Credibility of off-taker.
- Periodicity of auctions (as part of a long-term plan).
- Confidence from past auctions.
- Lessons learnt from past auctions (auctioneer and bidders).
- Reuse of documents/studies from past rounds.

Systematic auctions and the learning curve impact

Country	Renewable energy technology	First iteration	Second iteration	Learning curve impact
South Africa	Various	2011: 53% bids qualified	2012: 64.5% bids qualified	+11% increase in bid qualification rate
India	Solar PV	2010: 12.16 INR/ kWh	2011: 8.77 INR/kWh	28% decrease in contracted price
California (USA)	Various	2011: 92 bids received	2012: 142 bids received	+54% of bids received

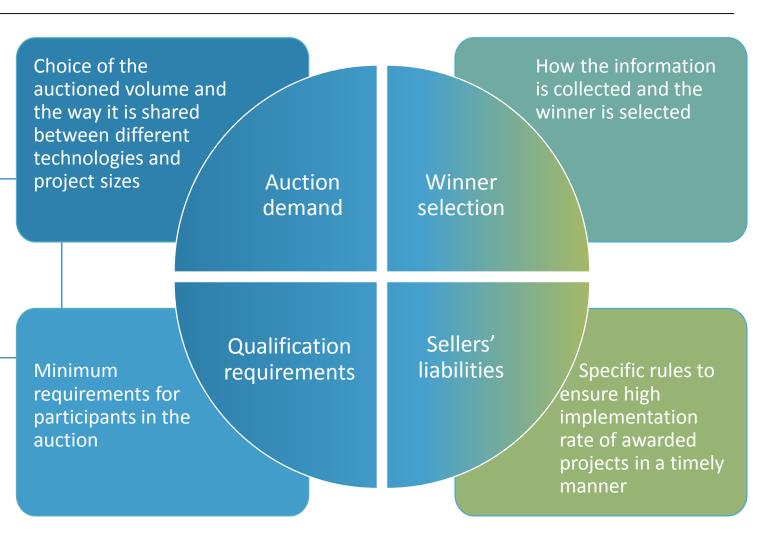
Source: IRENA and CEM, 2015.



Policies and measures supporting renewable energy development

- National plans and targets.
- Fiscal incentives (tax credits, exemptions, accelerated depreciation, etc.)
- Grid access and priority dispatch.
- Socio-economic benefits.

US solar prices: actual vs. estimated effective prices, February 2013-May 2016


Source: based on data from Shahan, 2016.

The design of the auction considering trade-offs:

- Ensuring project delivery and price.
- Fulfilling development goals and price.
- Encouraging small/new players and price.

IRENA and CEM, 2015

Key messages

Policy makers may want to consider the following:

- Different policy options are not mutually exclusive and each type can be used to address different technologies, capacities, markets and objectives.
- Auctions play an important role in the new generation of policies and they have become increasingly sophisticated in their design
 - Account for the trade-offs between different design elements
 - Tailor the design of auctions to the specific context and objectives
- Mobilising the scale of investment necessary requires an environment that is built on an enabling policy and regulatory framework that can catalyse private investments into the energy sector

