

Renewables: The True Costs

Michael Taylor Senior Analyst mtaylor@irena.org

Fills an important gap in knowledge

World-class database of costs

Cutting edge analysis, not just data

All sectors covered, not just power

Costing Alliance deepens engagement

THE IRENA RENEWABLE COST DA TABASE

IRENA's database: Scope and coverage

Power: 15000 utility-scale projects for LCOE, ³/₄ million small-scale solar PV

Smaller dataset on biofuels/EVs

Stationary applications are being added

Power: database concentrated in non-OECD as more publicly available information

Power generation database

Renewable Power Generation Costs in 2016

Highlights

The relentless improvement in competiveness continues

Renewables competing head-to-head with fossil fuels

Integrating variable renewables doesn't change the conclusions

Future cost reductions will be more policy driven

Renewables: Highly competitive for new capacity

IRENA

Traditional renewables highly competitive

Cost reductions for wind and solar, make them increasingly competitive

Cost rise for average hydro projects, geo & biomass data needs more work

Each circle represents one project, centre of circle is LCOE value on Y axis, diameter is size of project. Year is year commissioned.

Wind power costs are falling....

International Renewable Energy Agency

Higher capacity factors from improved technology

Sources: Wiser and Bollinger, 2014; CWEA, 2013; BNEF, 2014c; and Global Data, 2014.

Note: BNEF WTPI represents the half-year average for non-Asian markets, while the United States data are for the specific month of a particular turbine contract and the Chinese data are annual averages.

Sources: Wiser and Bollinger, 2014; Danish Energy Agency, 2014; and GlobalData, 2014

Onshore wind learning curve: Total installed costs

MX/DSD/KM

International Renewable Energy Agency

Onshore wind learning curve: Levelised cost of electricity

_

Solar PV utility-scale projects

and cost reductions

Falling LCOEs

Tender and PPA results

Dramatic convergence of solar PV and onshore wind to same LCOE range

But some of these projects are "boundary" projects, difficult to replicate for solar PV

Residential solar PV: Cost differentials persist

IRENAs PV Parity Indicators (Preview)

Real Conjectional data tricity Rates Analysis PV Parity Analysis

Evolution of Costs per Quarter (Prelimi^{Costs} in 2014 vs System Size (Preliminary Results)

Don't forget about biomass, geothermal and hydro

Geothermal

The Power to Change

Cost Reduction Potentials for Solar and Wind

Costs will continue to fall for solar and wind power technologies to 2025

Large cost differentials

Continued technology innovation

Growing scale of markets

Policy framework critical to unlocking largest savings Cost reduction drivers are changing

Cost reduction potential overview

ST: Solar tower

Solar PV: Installed system costs to 2025

Large average cost reduction potential

BoS dominates potential

Will require action by policy makers

Highly dependent on BoS convergence scenario

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Solar PV LCOE to 2025

IRENA Renewable COSTING ALLIANCE

IRENA Renewable Costing Alliance

Member countries:

Steering group for costing analysis focus One workshop a year Must nominate institution to deliver data Quarterly newsletter

Alliance Members:

Provide data, confidentially One workshop a year Ability to query the database in detail Quarterly newsletter Your organization?

Observers: Quarterly newsletter Mailing list for new publications/analysis Upcoming cost analysis: Firm

Quarterly PV parity indicators

Global wind learning curve

Heat pumps for stationary applications

RE Power Generation Costs in 2016

Battery markets & costs to 2030

RE financing costs

Solar PV & Wind power in extreme climates

IRENA Costing Analysis Products

COSTS AND MARKETS

2012

2013

2015

Renewables are increasingly competitive

The winners are customers, the environment and our future

www.irena.org mtaylor@irena.org

Solar PV: BoScosts

Detailed breakdown of solar PV BoS costs by country, 2015

The range of BoS costs between costs groups is very large, but BoS costs also present the greatest opportunities for reduction potential

Identify policy questions that need to be asked.....

COMMERCIAL SOLAR PV COSTS

Installation Date

SOLAR PV IN AFRICA: COSTS AND MARKETS

NEW OPPORTUNITIES UNLOCKED

Solar PV Costs in Africa

Africa has a need for power: Solar resources make PV an excellent fit

But cost structure is different from other regions

Data collection challenging, but encouraging results

- Some markets relatively competitive
- Very small SHS cost structures are challenging
- Regional deep-dives necessary for greater clarity

Solar PV costs in Africa: Utility-scale and SHS

Source: IRENA Renewable Cost Database, 2016

Annual off-grid household expenditure on lighting and mobile phone charging compared to SHS (<1kW) annualized costs, by country (IRENA)