

San Antonio Hybrid Renewable Energy Pilot Project

1st October 2019

Introduction to Oceantera

- Joint venture between Singapore and Philippine-based OceanPixel and UK-based Aquatera
- Renewable energy development and sustainable solutions company based in South East Asia
- Team based in Singapore, Manila and UK with network of global partners and associates
- Expertise in utilisation and commercialisation of ocean renewable energy resources
- Specialise in the application of hybrid energy systems and other emerging technologies in island and coastal communities

Mission Statement

"To be a leading provider of sustainable solutions, including clean, affordable and reliable energy to remote and island communities through responsible development in collaboration with our partners and empowered local communities."

Oceantera activities - 2019

- Renewable energy demonstration sites and pathfinder projects
- Off-grid island and coastal community energy systems
- Grid connected utility scale renewable energy projects
- Electrification of ecotourism and fishing vessels
- Community outreach and education

San Antonio - project overview

- Integrated renewable energy power generation system to service the Municipality of San Antonio in Northern Samar
- Designed to phase out the existing diesel gen-set system
- Clean, reliable and affordable electricity and other essential services for over 9000 local residents and local businesses

Project objectives

- Increased energy security improved access and reliability to affordable power from local supply
- Increased food security ability to store food (particularly caught fish) for use during poor and extreme weather
- Disaster resilience tidal energy resource little affected by weather and climate, technology designed to withstand extreme weather conditions
- Climate change adaptation reduction in reliance on diesel protects community from future price increases

Existing energy system

Factor	Note(s)
Existing system	963kW diesel gen-set system
Power Producer	NPC-SPUG (Missionary electrification)
Distribution Utility	NORSAMELCO
Contracted energy 2019 to 2023	~1500MWh, 24 hours supply
Diesel Consumption	~32,100 liters per month
Diesel price	\$0.86 per liter
Household electrification	~80% (2019)
Approved True Cost of Generation (TCGR)	\$0.48 USD/kWh
Subsidised Approved General Rate (SAGR)	\$0.11 USD/kWh
Renewable Energy Generation	Mandated by law "Renewable Portfolio Standards for Off-grid areas"

Proposed energy solution

- Combined tidal current and onshore solar energy along with battery storage
- Integrated with existing energy infrastructure
- System will deliver electricity 24 hours per day at a lower rate than the 'true cost of generation'
- System can reduce current government subsidies required to support energy provision on the island

Project development partners

Project beneficiaries

- Local residents: improved access to energy and stored food as well as greater disaster resilience for approximately 9550 residents
- Women: empowerment of women (estimated 50% of the population) through skills development, training and livelihood development
- **Children:** through access to healthcare, information and education (children (below 14 years old) are estimated at 33% of the population)
- Local businesses: opportunities to improve services and expand businesses. In more secure and reliable energy making sectors e.g. tourism, food processes, communication and data services
- Local utility: Northern Samar Electric Cooperative will benefit from reliable and affordable power, helping meet targets for RE generation and increase revenue
- Local government: support for programmes on sustainable development, disaster preparedness, climate change mitigation etc
- **National government**: the project will deliver a test case or model for sustainable island electrification that can be rolled out across the country

Alignment with UN SDGs

Current status and next steps

Current status

- Resource identified and Service Contract approved
- Potential off-taker and route to market identified
- Project deemed to be technically and commercially viable
- Site visits and consultations with key stakeholders
- Engagement with all regulatory bodies

Next steps

- Detailed design and financial modelling
- Permitting
- Working with DU and key stakeholders to identify the best route to PPA
- Project financing
- Procurement
- Construction and implementation

Lessons learned (so far....)

- Technology stakeholders are often not familiar with ocean energy generation technology and view it as a 'high risk' option – education and outreach is required to facilitate development
- Cost first projects are high cost but also high impact in terms of sustainable development, social enhancement and economic growth – this needs to be communicated to funders and regulators
- Regulatory many countries and communities do not have the regulatory processes and resources in place to manage the development of these innovative projects – early engagement is key

Lessons learned (so far....)

- Infrastructure new or improved infrastructure will be required to deliver these projects – the social and economic impacts of these improvements can bring direct added benefits to local residents and businesses
- Supply chain there is unlikely to be a ready supply chain this provides an opportunity to deliver local training and capacity building programmes, creating a long term supply chain and workforce for the project, whilst creating jobs and opportunities within the community

Thank you.

Ian H Hutchison Director, Oceantera

Mobile: +44 7850 130599 Email: ian@oceanteraenergy.com Michael Lochinvar S Abundo, PhD Director, Oceantera

Email: mike@oceanteraenergy.com

Mobile: +65 9066 3584

Marianne Elanor A Catanyag Director, Oceantera

Mobile: +63 917 7382373 Email: <u>maan@oceanteraenergy.com</u>

