

Increasing Investments in District Energy Systems in Cities – a SE4AII Energy Efficiency Accelerator – City of Belgrade

Final results of the interconnection study

RES Foundation Partnerships for Resilience

Spinoff of the
Operations Research
(OR) team of the
University of Bologna

We develop solutions
and services based on
analytics &
optimization

Young and highly skilled team: everyone holds a STEM Master Degree or PhD

We are
Data scientists,
Business consultants,
Operations Research
specialists,
SW application dev.
professionals

We work for medium and large enterprises in several industries:

Energy, Waste,
Logistics, Retail, etc.

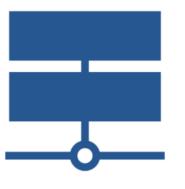
We participate in the scientific community and active in fostering "OR in Practice"

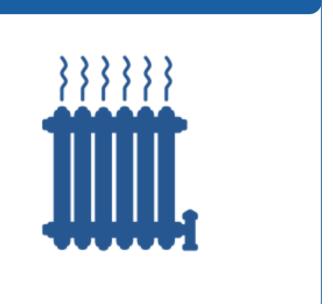
2 main Offices

Consultancy services and Commercial HQ in **Bologna**

SW Factory in Cesena

Proposition in DH




GENERATION

DISTRIBUTION

DEMAND

DSS for Energy production optimisation

- H/P/C demand forecast
- Operational **scheduling** of production assets to optimise operating margin
- **Budgeting** and what-if yearly analyses
- System integration for automatized process

DSS for network development optimization

- Investment (NPV) optimisation analysis
- Technical and economic decision drivers integration
- Advanced built-in thermalhydraulic model for feasibility check

Advanced analyctis methodologies

- Heat consumption patterns and profiling
- Identification and qualification of user clusters

Network Optimisation

THE BUSINESS OBJECTIVE

How to plan Distric Heating (& Cooling)

Network Development roadmaps that
maximise the Return on Invested Capital
(i.e. Net Present Value), amongst
countless possible options?

CHALLENGES FOR DECISION MAKING

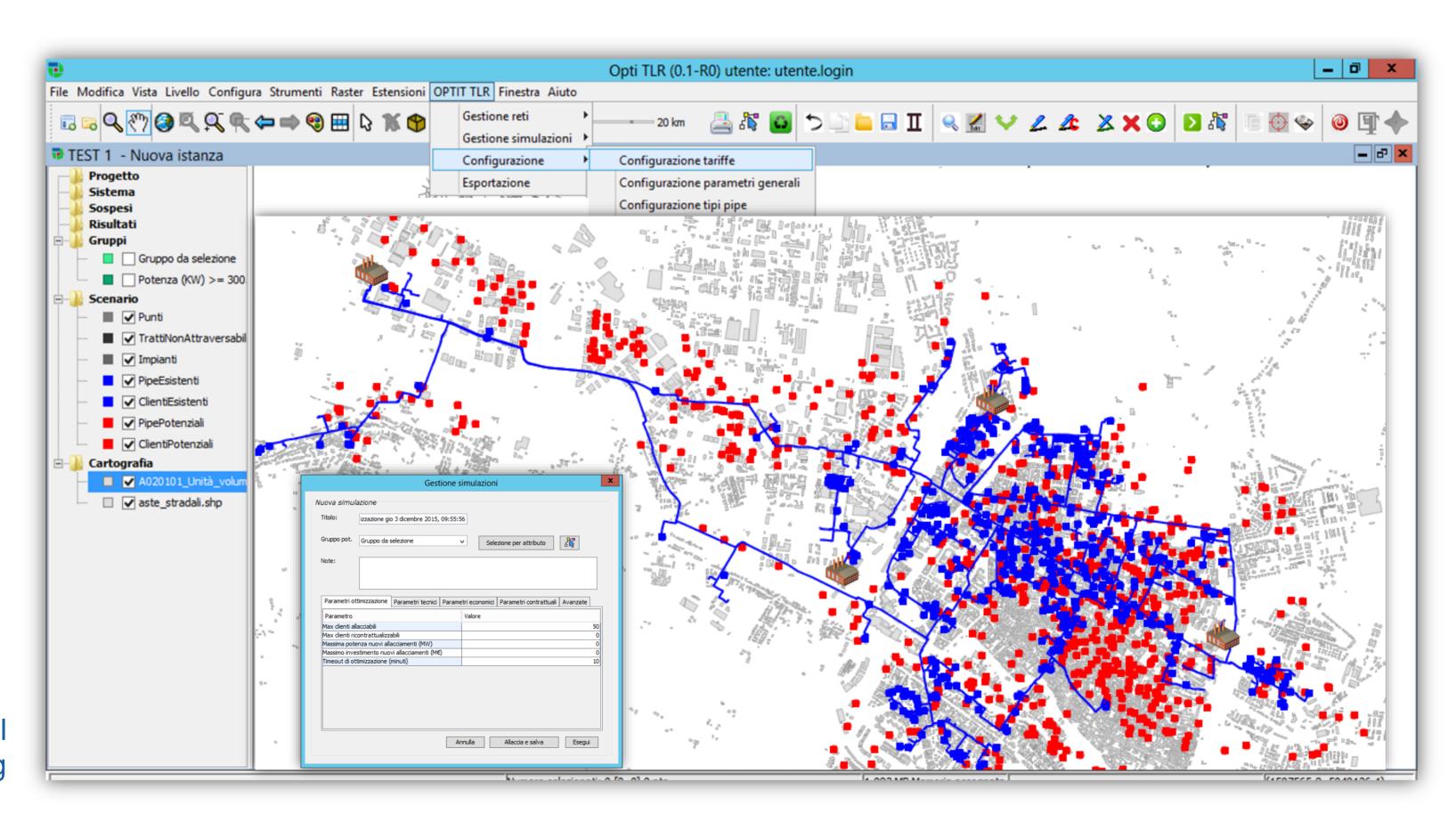
Geographic dimension of the business issue (overcome Excel)

Economic value assignments on costs and revenues sides

Several possible potential scenarios (what-if)

Thermal-hydraulic feasibility analysis of proposed solutions

DHN: the solution


Existing & potential **pipings**

Existing & potential **users**

Import + Puntual editing /drawing

Tariffs & Capex/Opex


Application Case

DECISION DRIVERS INTEGRATION

The tool allows for a smooth transition of the feasibility and commercial analysis from Marketing & Sales to Engineering department

The Challenge in Beograd

The key challenge: identify the optimal new network configuration

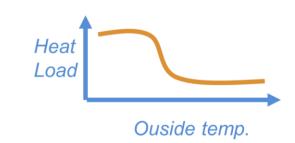

Analyze the technical and economic impacts of:

- Different interconnection scenarios
- Different piping sizing
- Integration of "carbon-friendly" energy sources

Goal: striking a balance between complex conflicting options

Technical and operational drivers

One vs multiconnections


Resource allocation

Renovation vs New Piping

Reference load to dimension

Peak vs Low Load

Project approach

Preliminary Activities

Data collection and integrity checks

Calibration

Calibration and validation of Optit's hydraulic model

Scenarios Analyses

Technical/economic analyses of identified investment scenarios

Delivery

Shared assessment +
Full report & Cartographic
representation of the results

Reliable characterization of the current DH system

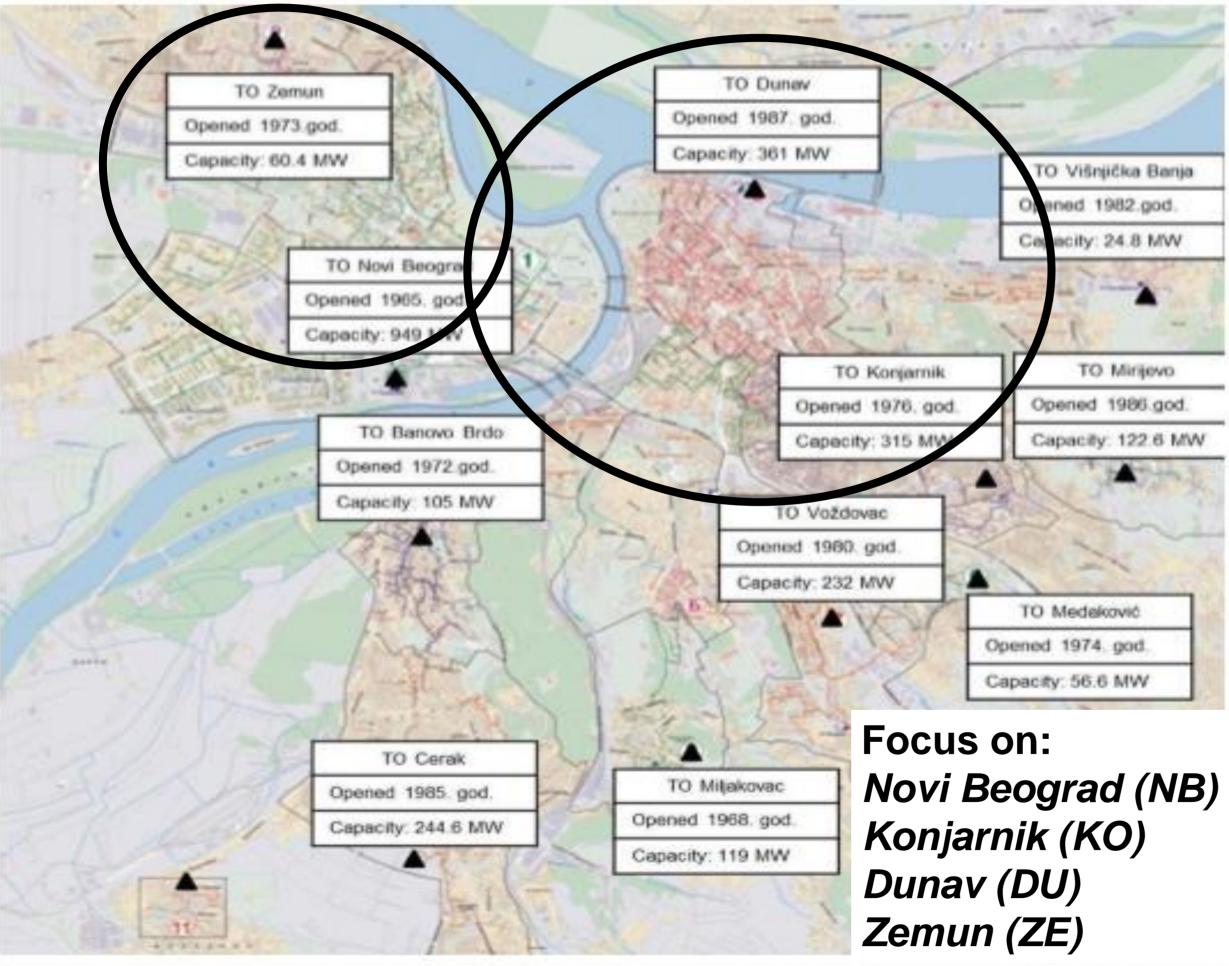
Benchmark 3 major sub-grids:
Optit's model vs SCADA vs TERMIS

DEVIATION < 0.3 BAR FOR SUPPLY/RETURN PRESSURES & ΔP AT THE PLANT AND THE NETWORK'S CRITICAL POINTS

Pre-feasibility studies of investment scenarios

Produced, analyzed and discussed several (100+) potential new network configurations

TECHNICAL AND ECONOMIC INSIGHTS ON FUTURE INFRASTRUCTURE INVESTMENT AND ITS IMPACT ON OPERATIONS



Subject of the analyses

NEW CONFIGURATIONS

- Perspective users to be connected (88 MW_{th})
- New (greener) sources: Thermal Plant (600 MW_{th}) + WTE (56 MW_{th})
- Planned construction of new piping and refurbishing of existing piping

Two separate hydraulic systems

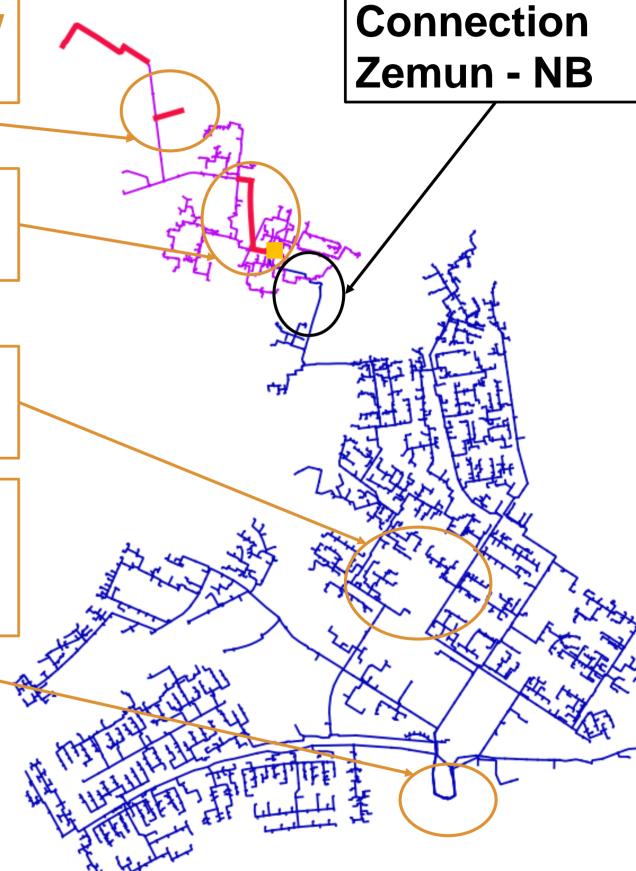
- Temperature-based regulation (always nominal flows) in Zemun-NB
- Flow-based regulation (demanddependent flows) in Konjarnik-NB-Dunav

New Zemun-NB system

Work conditions

- The connection must allow Zemun's current plant shut-down
- NB backbones have tight constraints (supply and Δp at the plant)
- The new network configuration must follow the current hydraulic regime and temperature-based regulation
- Can leverage upon presence of closed pipes linking NB main backbones

Investigation Lines

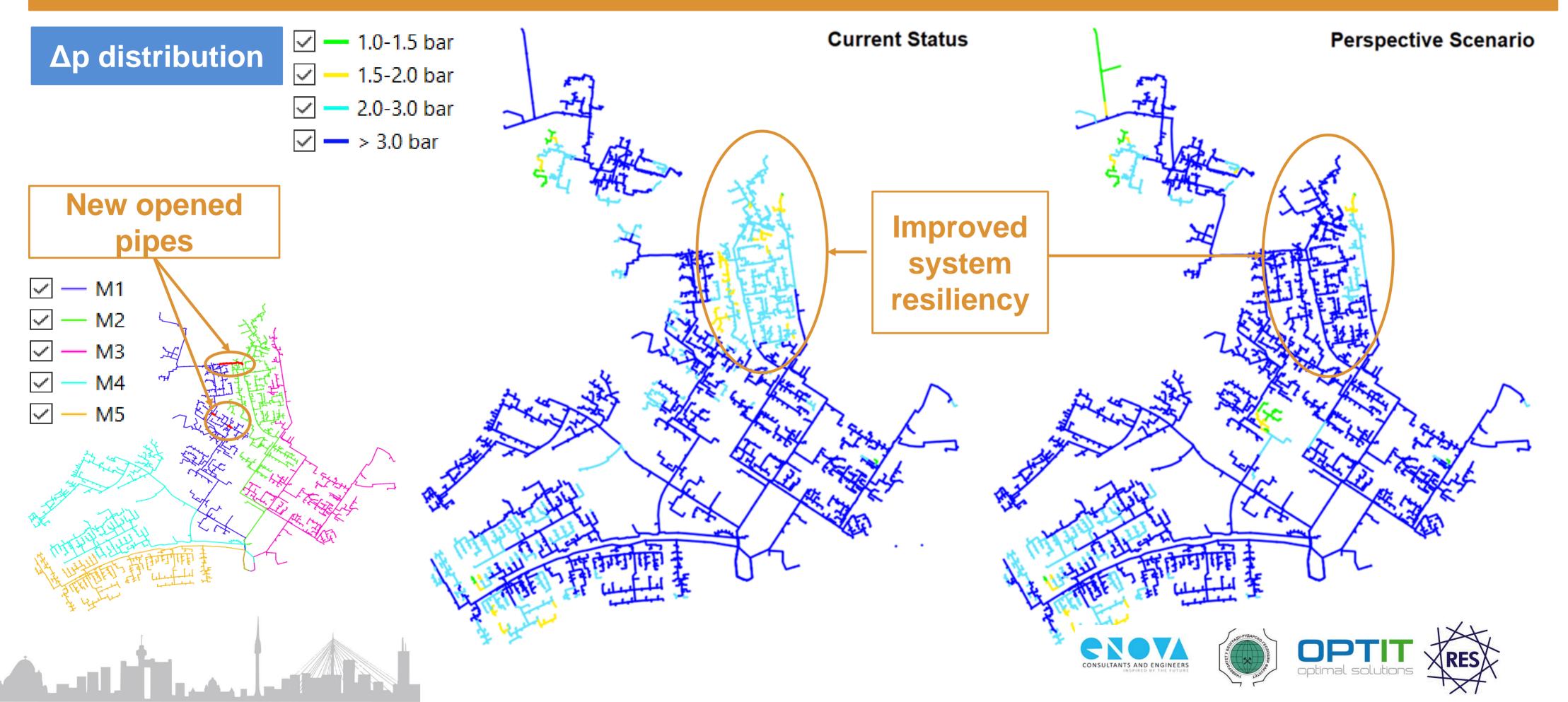

- Hydraulic balance of new network configurations
- Impact of opening different sets of closed pipes
- Impact of the new backbone construction
- Characterization of the pumping stations

New planned DN350 backbone in Zemun

New pumping stations

New source connection (TENT A)

New Zemun-NB system



New Network Configuration

Zemun-NB connection

HYDRAULIC BENCHMARK

		Baseline	Simulated Scenario
Zemun	flow (kg/s)	246	0
Novi Beograd M1	flow (kg/s)	613	769
Novi Beograd M2	flow (kg/s)	643	800
Novi Beograd M3	flow (kg/s)	729	729
Novi Beograd M4	flow (kg/s)	638	638
Novi Beograd M5	flow (kg/s)	601	601
	p supply (bar)	9.89	10.09
Novi Beograd M1-5	p return (bar)	1.90	2.05
	Δp (bar)	7.99	8.04

						NB-ZE CONNE	стом					
YEAR	NEW USERS SUPPLY (MWh)	NEW USERS REVENUE (RSD)	NEW USERS PRODUCTION COSTS (RSD)	PRODUCTION COSTS SAVINGS (RSD)	INVESTMENT COSTS (RSD)	AMORTIZATION (RSD)	GROSS FLUX (RSD)	TAXATION (RSD)	NET FLUX (RSD)	ACTUALIZATION COEFFICIENT (%)	ACTUALIZED VALUE (RSD)	CUMULATED ACTUALIZED VALUE (RSD)
0	11 000	137 177 400	-64 705 882	931 764 706	-126 908 705	-4 230 290	1 000 005 933	-150 000 890	727 326 629	100.0%	727 326 629	727 326 629
1	11 000	137 177 400	-64 705 882	931 764 706	0	-4 230 290	1 000 005 933	-150 000 890	854 235 334	98.0%	837 485 621	1 564 812 250
2	11 000	137 177 400	-64 705 882	931 764 706	0	-4 230 290	1 000 005 933	-150 000 890	854 235 334	96.1%	821 064 334	2 385 876 584
3	11 000	137 177 400	-64 705 882	931 764 706	0	-4 230 290	1 000 005 933	-150 000 890	854 235 334	94.2%	804 965 034	3 190 841 618
4	11 000	137 177 400	-64 705 882	931 764 706	0	-4 230 290	1 000 005 933	-150 000 890	854 235 334	92.4%	789 181 406	3 980 023 024
5	11 000	137 177 400	-64 705 882	931 764 706	0	-4 230 290	1 000 005 933	-150 000 890	854 235 334	90.6%	773 707 260	4 753 730 284
6	11 000	137 177 400	-64 705 882	931 764 706	0	-4 230 290	1 000 005 933	-150 000 890	854 235 334	88.8%	758 536 530	5 512 266 814
7	11 000	137 177 400	-64 705 882	931 764 706	0	-4 230 290	1 000 005 933	-150 000 890	854 235 334	87.1%	743 663 265	6 255 930 078
8	11 000	137 177 400	-64 705 882	931 764 706	0	-4 230 290	1 000 005 933	-150 000 890	854 235 334	85.3%	729 081 632	6 985 011 710
9	11 000	137 177 400	-64 705 882	931 764 706	0	-4 230 290	1 000 005 933	-150 000 890	854 235 334	83.7%	714 785 914	7 699 797 624
10	11 000	137 177 400	-64 705 882	931 764 706	0	-4 230 290	1 000 005 933	-150 000 890	854 235 334	82.0%	700 770 504	8 400 568 128
11	11 000	137 177 400	-64 705 882	931 764 706	0	-4 230 290	1 000 005 933	-150 000 890	854 235 334	80.4%	687 029 905	9 087 598 033
12	11 000	137 177 400	-64 705 882	931 764 706	0	-4 230 290	1 000 005 933	-150 000 890	854 235 334	78.8%	673 558 731	9 761 156 764
13	11 000	137 177 400	-64 705 882	931 764 706	0	-4 230 290	1 000 005 933	-150 000 890	854 235 334	77.3%	660 351 697	10 421 508 461
14	11 000	137 177 400	-64 705 882	931 764 706	0	-4 230 290	1 000 005 933	-150 000 890	854 235 334	75.8%	647 403 624	11 068 912 085
15	11 000	137 177 400	-64 705 882	931 764 706	0	-4 230 290	1 000 005 933	-150 000 890	854 225 334	74.3%	634 709 436	11 703 621 521
16	11 000	137 177 400	-64 705 882	931 764 706	0	-4 230 290	1 000 005 933	-150 000 o 9 0	854 235 334	72.8%	622 264 153	12 325 885 673
17	11 000	137 177 400	-64 705 882	931 764 706	0	-4 230 290	1 000 005 933	-150 000 890	854 235 334	71.4%	610 062 895	12 935 948 568
18	11 000	137 177 400	-64 705 882	931 764 706	0	-4 230 290	1 000 005 933	-150 000 890	854 235 334	70.0%	598 100 877	13 534 049 445
19	11 000	137 177 400	-64 705 882	931 764 706	0	-4 230 290	1 000 005 933	-150 000 890	854 235 334	68.6%	586 373 409	14 120 422 854

CONCLUSIONS

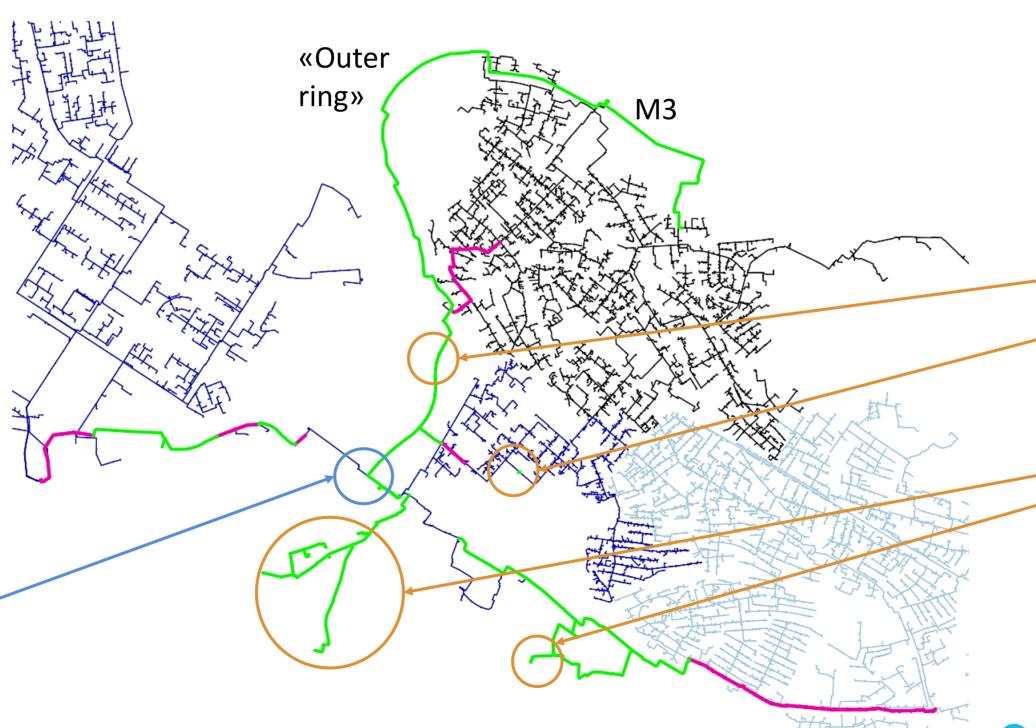
The hydraulic balance complies with the technical constraints provided and adheres to the current conditions

The load in Zemun is taken on by the expanded capacity in NB, allowing the current local boiler house to be dismissed

The interconnection investment itself (without the costs of integrating TENT A) has an immediate payback time (< 2 months)

INDEX VALUE
NPV (RSD) € 14 120 422 854

New NB-DU-KO system


INITIAL WORK CONDITIONS

- The multi-network connection will maximize the supply of new sources (especially at lower loads)
- Significant altitude differences pose technical challenges to pressure management
- Presence of closed pipes linking the separated networks may be an opportunity

Potential new backbones (green lines)

Potential refurbishment of existing backbones (purple lines)

Planned new pumping station(s)

Connection of new users (63 MW_{th})

Existing Boiler stations (15 MW_{th}) to be shut down

New NB-DU-KO system

INVESTIGATION LINES

Hydraulic balance of the new aggregated network

Minimize operating pressures

Planned new piping vs refurbishment of existing assets

Trade-off between costs/technical Benefit

How to operate in low-load conditions

Is it feasible to rely on new sources only?

Impact of opening closed-down pipes

Does it improve the hydraulic balance?

Design of the new pumping station(s)

What is the required minimum Δp ?

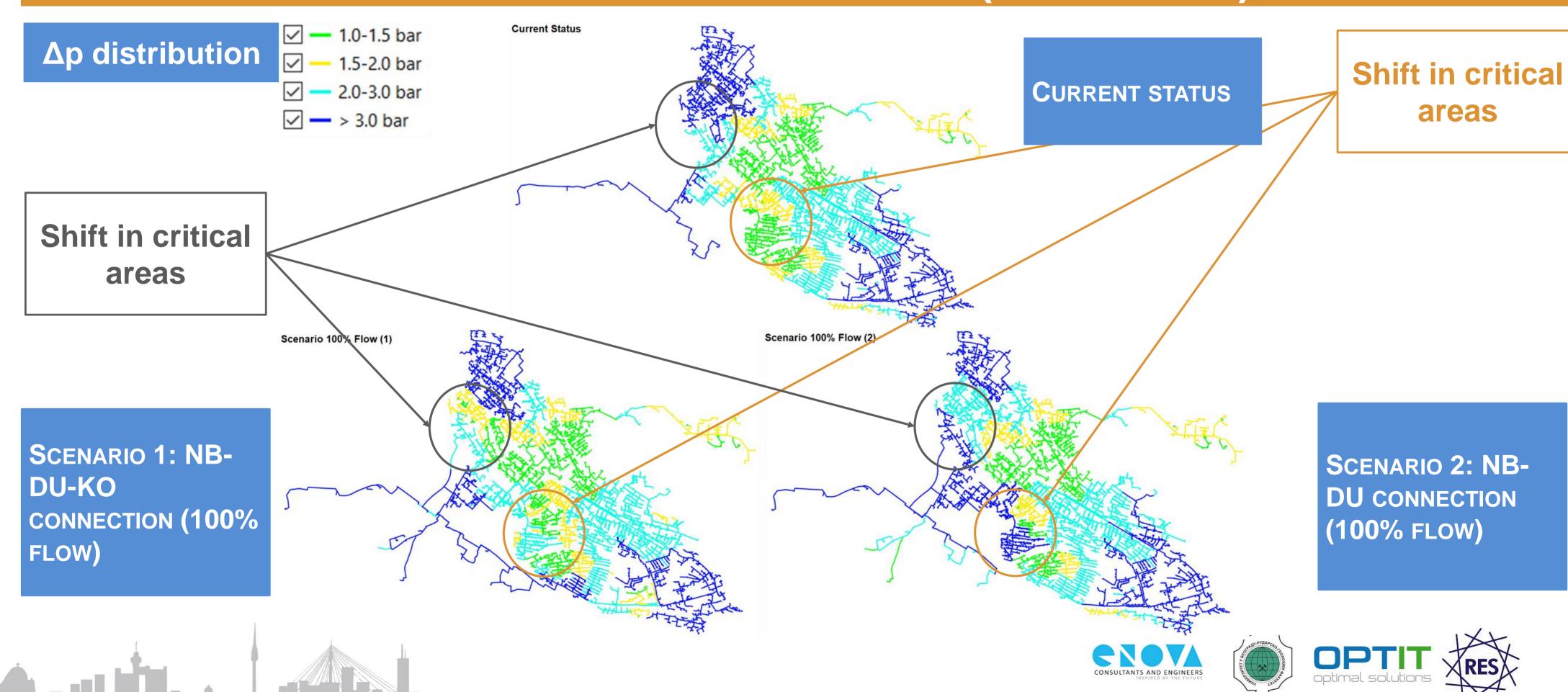
New NB-DU-KO system

SUMMARY OF RESULTS WORK CONDITIONS

The "outer ring" has been proved not to provide significant benefit

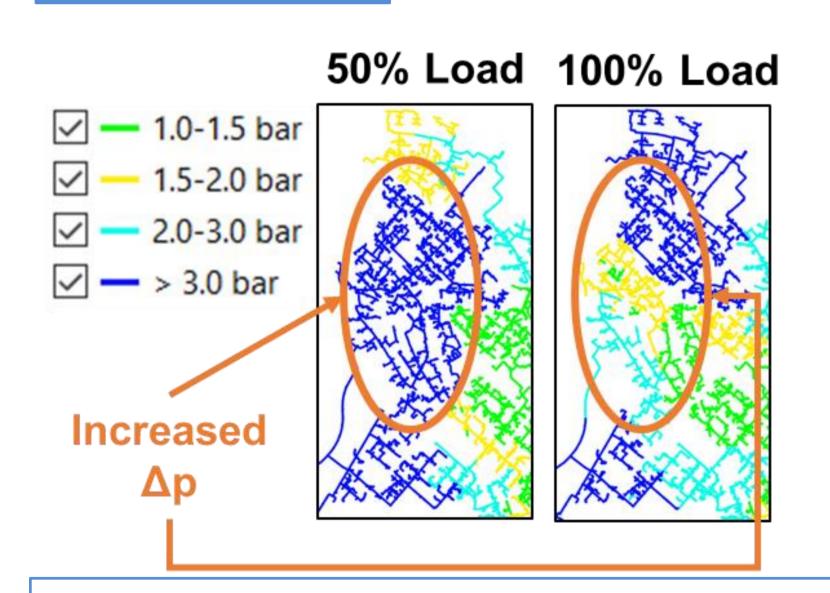
Planning guidelines have been confirmed and refined, integrating additional spot actions

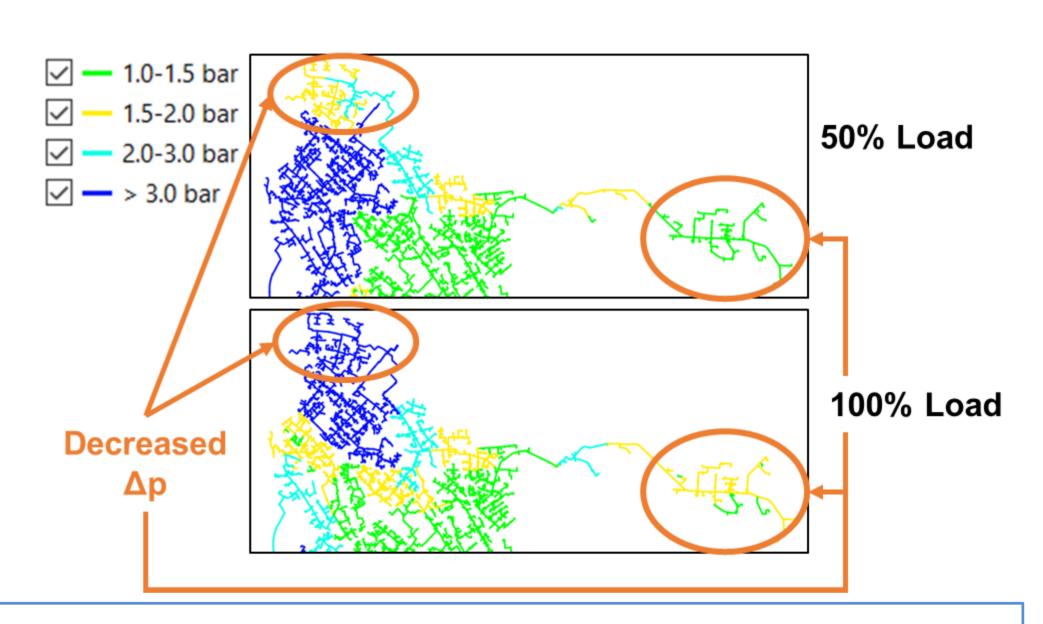
NB-DU-KO connection



NEW NETWORK CONFIGURATION (100% FLOW)

NB-DU-KO connection





HYDRAULIC REGIMES AT LOW LOADS

Δp distribution

In low load scenarios the heat coming from TENT-A serves an even larger portion of Dunav's system, allowing a decrease in Δp at the plant, without reaching critical conditions at the peripheral sections of the network

NB-DU-KO connection

HYDRAULIC BENCHMARK

		Baseline	s 100% Flow (1)	s 100% Flow (2)	s 50% Flow
	p supply (bar)	12.00	12.00	12.00	8.82
Dunav	p return (bar)	7.12	7.12	7.12	6.30
	deltaP (bar)	4.88	4.88	4.88	2.52
Konjarnik	p supply (bar)	9.17	8.80	9.17	8.80
	p return (bar)	3.45	3.61	3.46	3.61
	deltaP (bar)	5.72	5.19	5.72	5.19
	p supply (bar)	11.31	12.00	12.00	12.01
Novi Beograd M6	p return (bar)	5.00	3.99	3.99	4.39
	deltaP (bar)	6.31	8.01	8.01	7.62

	NB-DU-KO CONNECTION											
YEAR	NEW USERS SUPPLY (MWh)	NEW USERS REVENUE (RSD)	NEW USERS PRODUCTION COSTS (RSD)	PRODUCTION COSTS SAVINGS (RSD)	INFRASTRUCTU RAL INVESTMENT COSTS (RSD)	AMORTIZATION (RSD)	NET FLUX (RSD)	TAXATION (RSD)	NET FLUX (RSD)	ACTUALIZATION COEFFICIENT (%)	ACTUALIZED VALUE (RSD)	CUMULATED ACTUALIZED VALUE (RSD)
0	33 185	413 836 780	-88 729 412	971 105 882	-2 954 497 328	-98 483 244	1 197 730 007	-179 659 501	-1 837 943 578	100.0%	-1 837 943 578	-1 837 943 578
1	33 185	413 836 780	-88 729 412	971 105 882	0	-98 483 244	1 197 730 007	-179 659 501	1 116 553 750	98.0%	1 094 660 539	-743 283 038
2	33 185	413 836 780	-88 729 412	971 105 882	0	-98 483 244	1 197 730 007	-179 659 501	1 116 553 750	96.1%	1 073 196 607	329 913 569
3	33 185	413 836 780	-88 729 412	971 105 882	0	-98 483 244	1 197 730 007	-179 659 501	1 116 553 750	94.2%	1 052 153 536	1 382 067 105
4	33 185	413 836 780	-88 729 412	971 105 882	0	-98 483 244	1 197 730 007	-179 659 501	1 116 553 750	92.4%	1 031 523 075	2 413 590 180
5	33 185	413 836 780	-88 729 412	971 105 882	0	-98 483 244	1 197 730 007	-179 659 501	1 116 553 750	90.6%	1 011 297 132	3 424 887 312
6	33 185	413 836 780	-88 729 412	971 105 882	0	-98 483 244	1 197 730 007	-179 659 501	1 116 553 750	88.8%	991 467 777	4 416 355 088
7	33 185	413 836 780	-88 729 412	971 105 882	0	-98 483 244	1 197 730 007	-179 659 501	1 116 553 750	87.1%	972 027 232	5 388 382 320
8	33 185	413 836 780	-88 729 412	971 105 882	0	-98 483 244	1 197 730 007	-179 659 501	1 116 553 750	85.3%	952 967 874	6 341 350 195
9	33 185	413 836 780	-88 729 412	971 105 882	0	-98 483 244	1 197 730 007	-179 659 501	1 116 553 750	83.7%	934 282 230	7 275 632 425
10	33 185	413 836 780	-88 729 412	971 105 882	0	-98 483 244	1 197 730 007	-179 659 501	1 116 553 750	82.0%	915 962 970	8 191 595 395
11	33 185	413 836 780	-88 729 412	971 105 882	0	-98 483 244	1 197 730 007	-179 659 501	1 116 553 750	80.4%	898 002 912	9 089 598 307
12	33 185	413 836 780	-88 729 412	971 105 882	0	-98 483 244	1 197 730 007	-179 659 501	1 116 553 750	78.8%	880 395 012	9 969 993 319
13	33 185	413 836 780	-88 729 412	971 105 882	0	-98 483 244	1 197 730 007	-179 659 501	1 116 553 750	77.3%	863 132 365	10 833 125 684
14	33 185	413 836 780	-88 729 412	971 105 882	0	-98 483 244	1 197 730 007	-179 659 501	1 116 553 750	75.8%	846 208 201	11 679 333 885
15	33 185	413 836 780	-88 729 412	971 105 882	0	-98 483 244	1 197 730 007	-179 659 501	1 116 553 750	74.3%	829 615 883	12 500 949 768
16	33 185	413 836 780	-88 729 412	971 105 882	0	-98 483 244	1 197 730 007	-179 659 501	1 116 553 750	72.00/	813 348 905	13 322 298 672
17	33 185	413 836 780	-88 729 412	971 105 882	0	-98 483 244	1 197 730 007	-179 659 501	1 110 553 750	71.4%	797 400 887	14 119 699 560
10	33 185	113 836 780	-88 729 412	971 105 882	0	-98 483 244	1 107 700 007	-179 659 501	1 116 553 750	70.0%	781 765 576	14 901 465 135
19	33 185	413 836 780	-88 729 412	971 105 882	Λ	-98 483 244	1 197 730 007	-179 659 501	1 116 553 750	68.6%	766 436 839	15 667 901 974

CONCLUSIONS

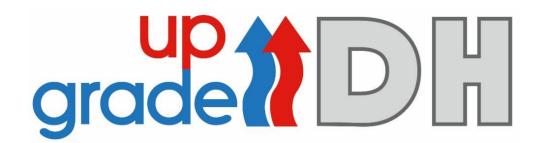
The interconnection plan is feasible and may be achieved in different manners (S1 & S2), allowing for operational flexibility in case of boundary conditions variations (

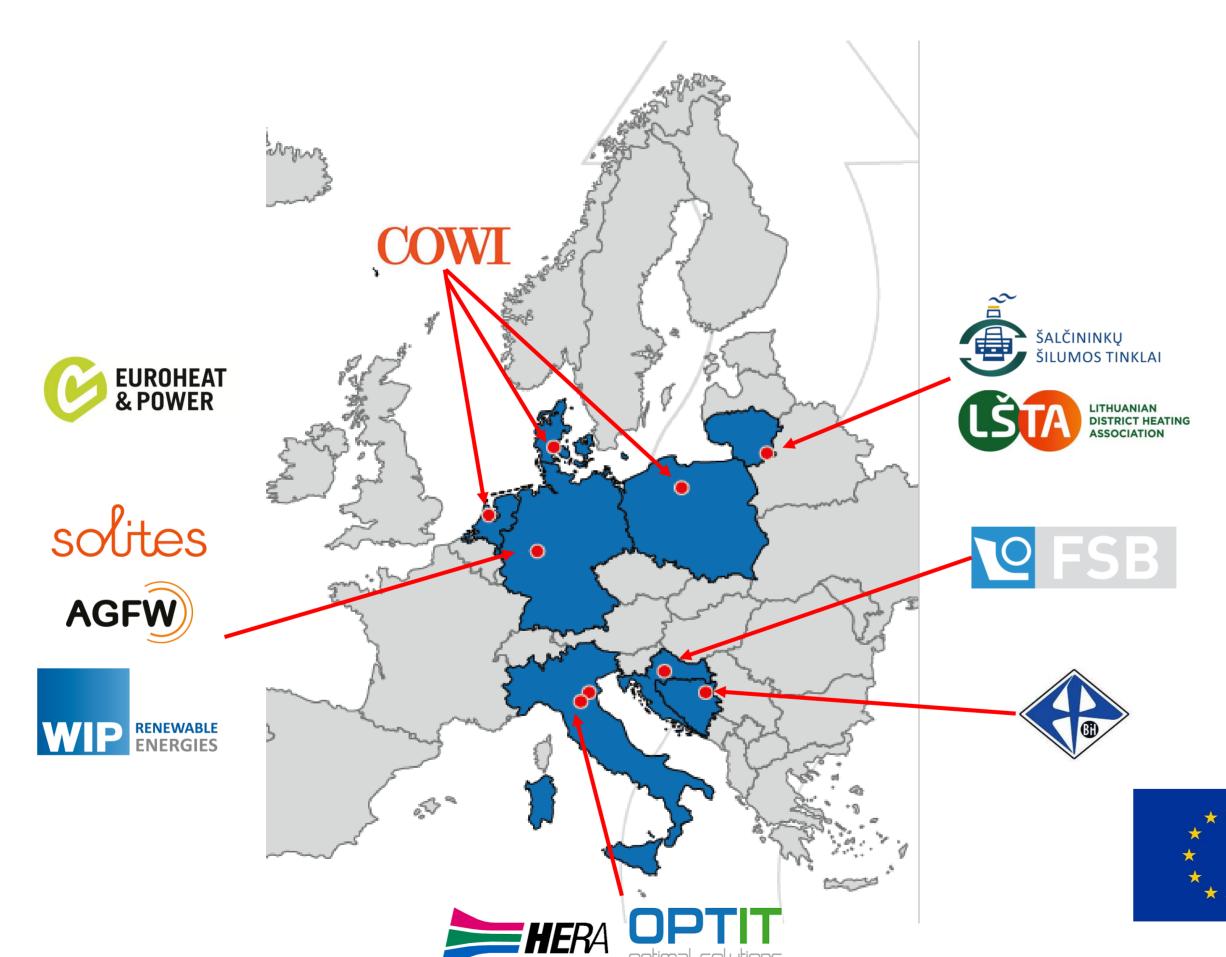
Refurbishment of long segments of existing pipeline is necessary in order to comply with the technical constraints and avoid bottlenecks (yet, the outer ring has been seen to be superfluous)

In low-load conditions the new sources may be saturated within the technical constraints and many areas in Dunav and Konjarnik may be then served by TENT-A, decreasing the Δp required at the former plants.

The interconnection investment itself (without the costs of integrating TENT A) has an payback time of less than 3 years

Conclusions


- The current networks have been configured into Optit's tool, with a successful validation against both SCADA data and TERMIS simulations
- Lots of (+100) potential investment scenarios have been considered and analyzed, determining the best trade-off between investment costs and technical benefits
- Interconnection scenarios are feasible and show increased operating flexibility in different load conditions, that can be exploited in light of future further network expansion
- The finalized scenarios have been provided through cartographic data, KPI assessment and investment cash flow analysis



Improving existing DH networks in Europe:

- → Initiate the DH upgrading process for 8 systems up to the investment stage (Generation, Distribution, Use)
- Produce Best Practices and Tools Handbooks
- Develop regional / national action plans for DHN retrofitting
 - Replicate the proposed solutions across Europe

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 785014. The sole responsibility for the content of this report lies with the authors. It does not necessarily reflect the opinion of the European Union nor of the Executive Agency for Small and Mediumsized Enterprises (EASME). Neither the EASME nor the European Commission are responsible for any use that may be made of the information contained therein.

Thank you for your attention!

