

IRENA WORKSHOP ON ADDRESSING THE GEO-SPATIAL ASPECTS OF VARIABLE RENEWABLE ENERGY IN LONG-TERM PLANNING Country experience

Lucija Išlić Energy Institute Hrvoje Požar

CROATIA

Bonn, Germany, December 2019

Content

- Introduction
- Overview of analyses
- Q&A

Introduction

3

National Energy Strategy until 2030/2050

- Major objective of the strategy was the identification of possible pathways towards joint EU target of 80% GHG emission reduction
 - Energy and electricity demand analysis (MAED)
 - Structure of overall energy demand and share of electricity
 - Electricity supply options (MESSAGE)
 - National case study
 - Results on competitiveness of various electricity supply options
 - Green book
 - Results of an analysis of possible energy development scenarios by 2050
 - Based on projection of demographic and economic development of Republic Croatia, made in previous period as an analytical platform to prepare an energy strategy
 - White book
 - Second step towards creating the Strategy
 - Deals with the issues of implementation of energy sector transition

National Energy Strategy until 2030/2050

- Demand projections for two regions, continental and Mediterranean
- RES potential was determined and divided into those two regions
 - Wind atlas
 - Resource maps are compared to environment protection plans, populated areas, etc.
 - It is done using GIS tools
 - Solar potential

Overview of analyses (4)

Integrated Resource Plan for Botswana

Objectives

- **Diversification** of sources of electricity generation
- Competitiveness in electricity sector
- **Security** of electricity supply
- Self-sufficiency in electricity generation and becoming a net electricity exporter
- Mitigation of environmental impact, mostly by using low carbon technologies

Integrated Resource Plan for Botswana

Methodological approach

- Model of Botswana power system developed in MESSAGE tool
- Data collection on the existing power system
- Analysis of available resources and identification of expansion power plant candidates
- Analysis of seasonal and intraday **demand and generation variabilities**
- Modelling **demand forecasts** (results of MAED model)
- Regional electricity market analysis
- Development of **supply scenarios** combined with demand scenarios
- Analysis of results

MESSAGE: Model for Energy Supply System Alternatives and their General Environmental impacts

INPUT

Overview of analyses (7)

Integrated Resource Plan for Botswana

Expansion project candidates

BOTSWANA RENEWABLE ENERGY ZONES fotal Levelized Cost of Elec < 120
121 - 125
126 - 130
131 - 135
136 - 140
341 - 145
146 - 150
151 - 155 111 - 120 111 - 120 121 - 130 126 - 160 > 131 > 161 INFRASTRUCTURE Major cities Renewable energy power pl Operational Poten Wed I () Wind Solar PV () Solar Solar CSP () () Solar shermal 😑 🜖 Ge - 101 - 200 -- 301 - 400 KV -- 201 - 300 ki ▲ > 400 ▲ 101 - 200 ▲ 301 - 400 ▲ 65 - 100 ▲ 201 - 300 ▲ Not specified DEVELOPMENT CONSTRAINTS Elevation Protected area

SA IREN

Overview of analyses (8)

Integrated Resource Plan for Botswana

Modelling demand and generation variations

- Hourly data analysed
- Seasonal variations in electricity consumption minimal and variations in solar irradiation somewhat higher – three seasons in a year were distinguished
 - Season 1: January April
 - Season 2: May August
 - Season 3: September December
- Intraday variations of demand and renewable energy generation

Thank You for Your attention!

Lucija Išlić Energy Institute Hrvoje Požar Savska cesta 163 Zagreb, Hrvatska www.eihp.hr