

European Association for Storage of Energy

Energy Storage: a Key Flexibility Resource

Patrick Clerens Secretary General, EASE

07 November 2018 IRENA South East Europe Workshop on Grid Integration of Variable Renewable Energy Sources, Vienna

1. Introduction to EASE

European Association for Storage of Energy...

- ... is the European voice of the energy storage community
- ...advocates the role of energy storage as an indispensable instrument for the energy system
- ... supports a sustainable, flexible and stable energy system

...shares and disseminates information

Strategic objectives:

2

3

Promotion of the role and benefits of energy storage

Fair market design for energy storage

Promotion of funding for Energy Storage (mainly RD&D)

EASE

1. Introduction to EASE EASE Members

2. Why Do We Need Storage?

Paris Agreement and Decarbonisation Goals

- At the Paris climate conference (COP21) in December 2015, 195 countries adopted the first-ever universal, legally binding global climate deal.
- The agreement sets out a global action plan to put the world on track to avoid dangerous climate change by limiting global warming to well below 2°C.
- The Paris Agreement will have long-term effects on governments, citizens and companies.

2. Why Do We Need Storage?

Decarbonisation and the Energy Union - Example: Germany

EU decarbonisation goals?

2. Why Do We Need Storage?

Balancing Generation and Consumption at all Times Belgian Wind Power Forecasting - 02.09.2018

This challenge becomes more difficult the more variable renewables (vRES) you have in the system.

2. Why Do We Need Storage?

Available Flexibility Options to Integrate Variable Renewables

Many Energy Storage Technologies on the Market and in R&D

Energy Storage can provide many valuable services across the energy system.

Short-term energy storage applications

Today, there are many short-term (second-minutes) energy storage applications for reserve services and frequency regulation:

- Enhanced frequency response (UK): providing frequency response in one second or less
- Frequency containment reserve (EU): increasing/decreasing power output at very short notice, within 0 to 30 seconds
- Synthetic inertia: inertia-like response via super fast active (milliseconds) power injection and import → This is increasingly being considered across Europe
- Many of these shorter-term services are tendered on the market.
- More needs to be done to clarify possibilities to stack multiple services on one device, allow for long-term contracts, clarify TSO/DSO ownership for provision of infrastructure services.

Network reinforcement deferral: peak demand growth triggers power network reinforcements

- > Option 1: Traditional network reinforcement (overhead or underground power lines)
- Option 2: Energy storage can be used to provide security of supply when required while providing additional services to the TSO at other times

Streams

Energy capacity allocated to serve peak load at the Leighton Buzzard ESS

Possible Technologies:

- > Mechanical: Compressed Air Energy Storage, Liquid Air Energy Storage
- > Electrochemical: Lead Acid, Li-Ion, NaS, Flow batteries

Balancing

Possible Technologies:

- > Mechanical: Compressed Air Energy Storage (CAES), Liquid Air Energy Storage (LAES), Pumped Hydro Storage
- > Electrochemical: e.g. Lead Acid, Li-ion, NaS, Flow batteries (e.g. Vanadium, Zinc-Bromine)

Source : http://energyclub.stanford.edu/wp-content/uploads/2013/06/kavousian-3.png 2018.11.07_IRENA South East Europe Workshop on Grid Integration of Variable Renewable Energy Sources

4. EU Energy Storage Policy

Importance of Revenue Stacking

Applications and revenues

Applications by ESS in California

Source: ENEL - EASE Investor Workshop 2017

- Energy storage technologies have multiple applications and can derive revenue from multiple stacked revenue streams.
- To implement multi-service business cases, it is paramount to allow storage to provide all services it can deliver and to allow revenue stacking

4. EU Energy Storage Policy

Example: use of a Li-Ion ESS in Ireland 1/3

Li-lon Energy Storage System (ESS):

- Energy: 55 MWh or 5*11 MWh
- Power: 100 MW or 5*20 MW

Services provided by ESS:

- Ancillary services: operating reserves (POR, SOR & TOR)
- Capacity services

> 4 scenarios were considered to calculate the total cost of such ESS :

Scenario A	Scenario B	Scenario C	Scenario D
Historical Reference	High End of the Current	Low End of the Current	Indicator of Near
Price	Price Range	Price Range	Future Price
€2.0 Million/MWh	€1.5 Million/MWh	€1.0 Million/MWh	€0.75 Million/MWh

Source: Financial Viability of Lithium-Ion Based Energy Storage Systems for Ancillary Services in the Secondary Market, Jason Omer, 2015 POR: Primary Operating Reserve SOR: Secondary Operating Reserve TOR: Tertiary Operating Reserve

4. EU Energy Storage Policy

Example: use of a Li-Ion ESS in Ireland 2/3

> Profitability analysis for the ESS providing a single service to the market.

Source: Financial Viability of Lithium-Ion Based Energy Storage Systems for Ancillary Services in the Secondary Market, Jason Omer, 2015

4. EU Energy Storage Policy Example: use of a Li-Ion ESS in Ireland 3/3

Profitability analysis for the ESS providing several services to the market

> Revenue stacking is crucial for the profitability of storage projects

Source: Financial Viability of Lithium-Ion Based Energy Storage Systems for Ancillary Services in the Secondary Market, Jason Omer, 2015

4. EU Energy Storage Policy

Multi-Service Business Cases

- The EU institutions are currently clarifying the framework under which regulated entities could own, develop, manage and operate energy storage facilities (Articles 36 and 54 of the recast Electricity Directive):
 - Council: derogation for energy storage facilities "which are fully integrated network components"
 - Parliament: exception for the operation of energy storage facilities for "local short-term control of the distribution system"
- It appears that regulated entities will be allowed to own, manage and operate storage facilities in specific, non-market cases
- Therefore it is crucial to explore different ways to maximise the value of the storage facility when a regulated entity will have been allowed to build it, e.g. by looking into multi-service business cases

Multi-service business cases see a regulated entity share operation and/or ownership of one energy storage device with a non-regulated entity

4. EU Energy Storage Policy Example: Grid Fees for Energy Storage Systems

Indicative grid charges for a fictive large-scale PHS plant

Source: EASE Position on Energy Storage Deployment Hampered by Grid Charges, 2017 PHS: Pumped Hydro Storage

- Significant variance between countries creates distortions in cross-border energy trade: investment in PHS plants not only depends on where they are most needed, but also where grid costs are lower.
- EASE calls for a joint EU approach to grid charges, taking into account the contributions of energy storage to grid stability.

CONTACT DETAILS

EASE - European Association for Storage of Energy Avenue Adolphe Lacomblé 59/8 BE - 1030 Brussels Tel: +32 2 743 29 82 | Fax: +32 2 743 29 90 @EASE_ES info@ease-storage.eu www.ease-storage.eu

Secretary General: Patrick Clerens Senior Policy Officer: Brittney Elzarei Policy Officer: Marine Delhommeau Communications Officer: Doriana Forleo Project Officer: Emin Aliyev Technical Advisor: Jean-Michel Durand

EASE Members

