International workshop on 'Sustainable Rural Bioenergy Solutions in Africa' 19th Jan 2018

Project Klimablick

Unlocking Potential of New Cooking Methods with Bio-Briquettes and Efficiency Stoves for Rural Areas in Madagascar

Deepak Kumar Mohapatra

Project Coordinator Lernen-Helfen-Leben e.V.

Introduction and Problem Statements

- Organization Involved
- Efficiency Stoves
- Biomass Hand-Press
- Results from Experiments
- Energy Production Calculation
- Conclusion and Future Scopes
- References

Outline

Introduction

 Madagascar is the 4th largest island and with rich vegetation, it is a biodiversity hotspot

 Uncontrolled logging, forest fire, traditional practices have depleted the forest cover threatening biodiversity, water resources and soil stability

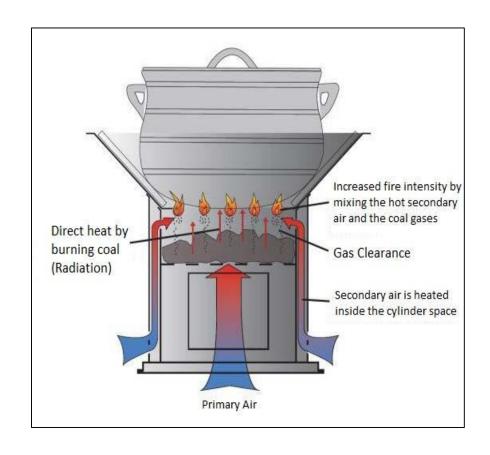
 Additionally, it is one of the ten countries expected to be the most affected by climate change in the world

Source: Google Maps and Images

Organizations Involved

Lernen-Helfen-Leben e.V., Germany

Founded by retirees in Germany and it's objective are to establish and support projects in developing countries


AJPER, Madagascar

AJPER is the partner organization of LHL working and promoting the projects in Madagascar

Efficiency Stoves

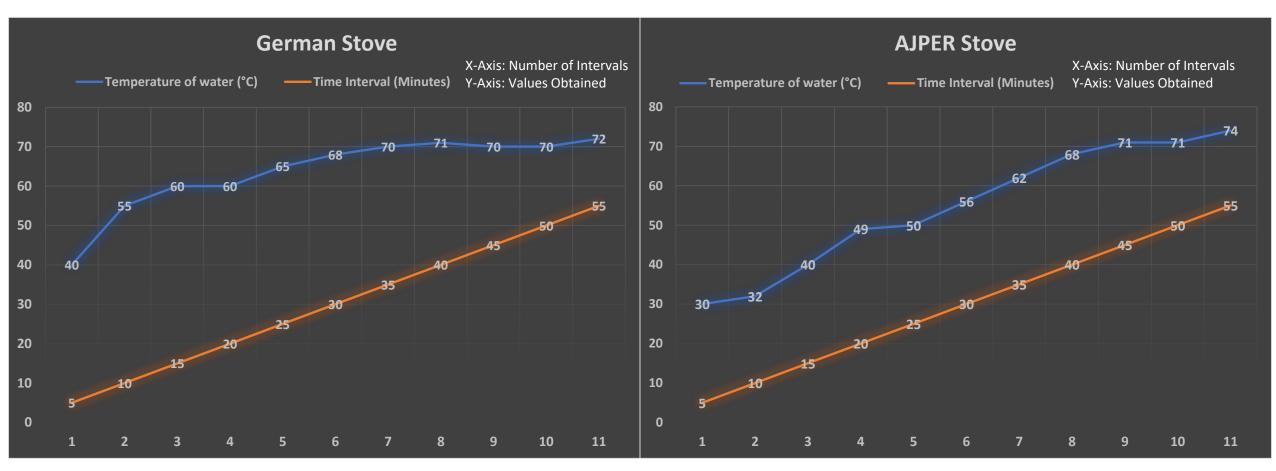
Model 1: Wood Stove

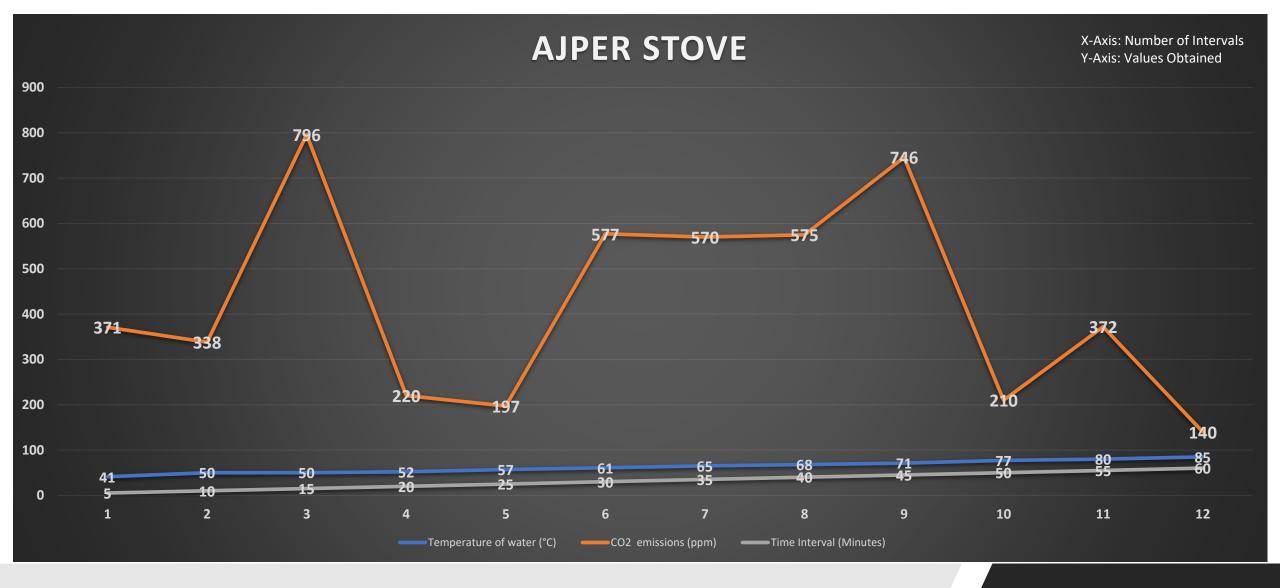
Model 2: Charcoal Stove

Model 3: Pyrolysis Based Stove

Biomass Hand-Press for Briquettes Production

- Simple manual mechanism
- Easy assembling and dismantling
- Easy transfer





Briquettes Manufactured

Experiments and Results

Comparison between Stoves

Most efficient result

Energy Production Calculation

345 g of bio-briquettes was around 6 to 8 briquettes of different weights which were used to boil 5L of water. So total energy potential of this combination of briquette when added together ranges around 4000 to 8000 KJ approximately.

Dry Bio- Briquette Weight (g)	23% of Grass		77% of Cow Manure		Total Energy
	Portion (g)	Energy Potential (KJ)	Portion (g)	Energy Potential (KJ)	Potential of the Bio-Briquette (KJ)
35	8.05	117.53	26.95	417.725	535.25
45	10.35	151.11	34.65	537.075	688.18
55	12.65	184.69	42.35	656.425	841.11
65	14.95	218.27	50.05	775.775	994.04
75	17.25	251.85	57.75	895.125	1146.97

Conclusions and Future Scope

01

With the application of bio-briquettes and efficiency stoves, the wood will be saved, as well as the health of the kitchen workers

02

Further R&D in Stoves, Press, modeling and experiments with bio-briquettes

03

Dealing with social problems like 'resistant to change' mindset

04

Establishment of a customer-friendly business plan

References

Bureau of African Affairs (3 May 2011). "Background Note: Madagascar". U.S. Department of State, Available: https://www.state.gov/r/pa/ei/bgn/5460.htm, [Accessed on: 17th October, 2017]

Country Profile: Madagascar, The World Bank, 2016, Online, Available: http://www.worldbank.org/en/country/madagascar/overview, [Accessed on: 19th October, 2017]

About LHL, 2017, Online, Available: http://www.l-h-l.org/, [Accessed on: 18th October, 2017]

Ronak Agrotech Engineering, Calorific Value of Biomass Fuels, 2014, Online, Available: https://www.slideshare.net/Ronak-Briquetting/ronak-agrotech-calorific-value-chart, Accessed on: 28th October, 2017]

