

POWERING AGRI-FOOD VALUE CHAINS WITH GEOTHERMAL HEAT

GEOTHERMAL HEAT TARIFFS

CAPACITY BUILDING EVENT – AFRICA WEBINAR

JULY 19, 2022

Key Factors In Establishing Heat Tariff

- ✓ Cost recovery for the energy supplier
- ✓ Temperature and flow rate of the fluid
- ✓ Distance to the application location
- ✓ Seasonal nature of produce

Key Elements Of A Heat Purchase Agreement

- ✓ Parties and duration
- ✓ Price for a unit of energy and how to measure it
- ✓ Tariff structure
- ✓ Minimum and maximum temperatures and amounts
- \checkmark Obligations of the parties
- ✓ Mechanisms to deal with underperformance
- ✓ Dispute resolution mechanisms
- ✓ Other terms and conditions

Capex elements for different direct use set-up options

Cost-based approach

Market-based approach

Stand-alone and cascaded systems

- Geology, Geophysics, Geochemistry, and reservoir engineering
- Drilling and testing exploration wells
- Permits and other compliance regulations
- Infrastructure development such as roads, well pads and retention ponds
 - Drilling and testing production and injection wells
 - Design and construction of the brine delivery and re-injection system

Both set-ups

- Feasibility and other engineering studies of the opportunity
- Heat exchangers
- Pumps
- •Electrical and controls
- Design and the contruction of the hot water delivery and return water systems

Integrated with electricity generation

- Additional permitting for resource utilisation (if required)
- Design and construction of the brine bypass of the original injection system

Key components

✓ Cost-plus approach

Capital Costs (CAPEX)

- ✓ Exploration studies
- ✓ Feasibility studies
- ✓ Permits
- ✓ Drilling
- Energy delivery systems and associated infrastructure

Operating Costs (OPEX)

- ✓ Salaries/wages
- Electricity usage for operations
- ✓ Equipment maintenance
- ✓ Interest/bank fees
- ✓ Depreciation of assets

Shared Costs

 Direct use project integrated with electricity generation Markup

1. Capital Investment Costs (CAPEX)

2. Operation and Maintenance Costs (OPEX)

Cost estimation for fish drying

Items	Specification	Quantity	Price per unit(\$)	Total price(\$)
Heat exchanger		1	20000	20000
Pumps	Cast iron	1	3500	3500
Well drilling		30m	100	3000
Fans	Centrifugal fans	2	1500	3000
Pipes	Carbon steel	150m	300	45000
Construction of drying station		1	150000	150000
Drying cabinet		1	2000	2000
Total initial cost				226500
Depreciation at 1% of initial cost				2265
Operation and maintenance at 15% of initial cost				33975
Total cost				262740

Fish drying initiated fixed investment and annual expenditures = USD 262,740

Simple payback period = $\frac{$262740}{$116712}$ = 2.25 years

3. Payback Period

Simple perhads period =	Initial fixed investment of the project
Зпприе рауваек репос –	cash inflow from the project

Fish drying cash inflow

ltems	Specification	Quantity kg/month	cost in \$/kg	Total cost in \$
cost of fresh fish	Fresh	25000	1.5	37500
cost of dry fish	Dry	5556	8.5	47226
cash inflow in \$/month				9726
Cash inflow/year				116712

Annual cash inflow = USD 116,712

- ✓ Mi : the initial moisture content is estimated at 80%, i.e., 0.8
- ✓ Mf : the final moisture content is estimated to be 10%, i.e., 0.1

Quantity of heat (energy) required to evaporate 19444.44 kg of water:

$$Q = m_w * h_{fg}$$

✓ Water evaporation assumption occurs at 20 o C during the drying process

$$\label{eq:hfg} \begin{split} h_{fg} &= 4.187*(597-0.56*20) = 2452.7 \ kJ/kg \\ Q &= 19444.44 \ kg/month * 2452.7 \ kJ/kg = 47692256 \ kJ \ per \ month \\ Q &= 18.4 \ kJ/s \end{split}$$

- ✓ Converting KJ to kWh. 1 kWh=0.0002778*KJ
- ✓ Monthly kWh consumed 13,250
- ✓ Year kWh consumption 159,000
- ✓ Assume 1 kWh cost 20 US cents
- ✓ Annual cost of using electric power to dry 25,000 kg of fish \$31,800. (on par with annual O&M costs using the cost-based method)
- ✓ Alterative cost calculation cost of geo water:
- ✓ Assume flowrate of geo- water 0.006 cm³/sec or 189,000 cm³/year.
- ✓ Price of one cubic meter of geothermal water 16 US cents

International Renewable Energy Agency

Market-based approach

- \checkmark When the cost of the alternative fuels increases considerably \rightarrow potential for the supplier to make higher returns
- ✓ When the demand and prices for alternative fuels subsides → geothermal heat prices dropping, and the energy supplier may incur losses

Cost-based approach

- ✓ The cost of energy varies mainly with the costs associated with developing and operating the energy supply system.
- Key benefit is that the supplier can establish long-term contracts for heat supply with customers and use them as a basis for obtaining financing.

THANK YOU!

