Grid investments as one option for load balancing – The case of REMix

<u>Yvonne Scholz</u>, Karl-Kiên Cao, Hans-Christian Gils **AVRIL Workshop** IRENA, Bonn, 12/13.12.2019

Knowledge for Tomorrow

REMix – overview and representation of the power grid

- Cost-minimizing model from an economic planner's perspective
- Hourly resolution, typically perfect foresight for one year
- Simultaneous optimization of plant expansion and operation
- Evaluation of investment and dispatch strategies
- Not focused on grid, consideration of all flexibility options
- Typically aggregated representation of the power grid
- Increasing detail on high-voltage grid in Europe

Power transmission grids in REMix: data input and modelling method

Data requirements

- Existing infrastructures
 - \rightarrow grid topology
 - \rightarrow location of generators and consumers
- CAPEX projections (€/GW km)
- Assumptions on technical specification of transmission lines
 - \rightarrow estimation of maximal transfer capacity
 - \rightarrow estimation of transmission losses

Methodology

- Annuity-based expansion of transmission capacities
- Linear power flow modeling either by
 - Transshipment model
 - DC-power flow approach (with/without PTDF based on presequent ACpower flow simulations)
- Line-specific length or cost-factors e.g. due to difficult terrain can be considered
- Differentiation between overhead lines, underground cables and sea cables

Case study for Europe with 85% GHG mitigation target considering different grid expansion scenarios (INTEEVER project)

- Competitive investments into grid and storage
- · Smart: investments also into wind/PV capacity
- Protest: Large scale infrastructures forbidden (caverns) or CAPEX 10 times more expensive (grid)
- Super: Extensive DC point-to-point grid expansion possible
- → Extensive investments into grid, however: mostly spatial resolution on national state level

Influence of power flow modeling approaches on grid investments (INTEEVER)

→ For low spatial resolution only small differences when applying different power flow modeling approaches to the same modeling setup

Systematic assessment of the influence of spatial resolution on investments into grid (BEAM-ME project)

- Experimental set-up:
 - REMix resolved on transmission grid level
 - · Investments into grid vs. storage
 - Different degrees of spatial aggregation
 - Scenario for Germany in 2030
- Accuracy indicates added capacity compared to full resolution of 488 regions
- Error in grid expansion costs caused by spatial aggregation can be quantified

Beyond the power grid: integrated optimization of integrated power, gas and transport systems with REMix (MuSeKo project)

- Simplified modelling of the gas system in REMix
 - Import, synthetic production
 - Pipeline transport
 - Large and small-scale storage
- Result for a 95% GHG reduction scenario
 - H₂ network and large scale storage complement the European power grid in seasonal balancing

Summary

- REMix includes different approaches for modelling power transmission grids
- Spatial resolution can be adjusted depending on project focus and data availability
- Interaction with energy storage and flexible sector coupling can be evaluated

References and contact

- Scholz, Y., Gils, H.C., Pietzcker, R. (2017) Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares. Energy Economics, 64, 568-582. http://dx.doi.org/10.1016/j.eneco.2016.06.021
- Gils, H.C., Scholz, Y., Pregger, T., Luca de Tena, D., Heide, D. (2017) Integrated modelling of variable renewable energy-based power supply in Europe. Energy, 123: 173-188. http://dx.doi.org/10.1016/i.energy.2017.01.115
- Gils, H.C. and Simon, S. (2017) Carbon neutral archipelago 100% renewable energy supply for the Canary Islands, Applied Energy, 188: 342-355. http://dx.doi.org/10.1016/i.apenergy.2016.12.023
- Cao, K.-K., von Krbek, K., Wetzel, M., Cebulla, F., Schreck, S., 2019, Classification and evaluation of concepts for improving the performance of applied energy system optimization models, Energies, https://doi.org/10.3390/en12244656
- Cao, K.-K., Predger, T., 2019, Grid Expansion, Power-To-Gas and Solar Power Imports Multi-Scenario Analysis of Large Infrastructure Options for the Decarbonization of the European Energy System, ETG-Fb. 158: International ETG Congress 2019, Power Engineering Society in the VDE (ETG) (Hrsg.), Das Gesamtsystem im Fokus der Energiewende May 8 - 9, 2019, Neckar Forum, Esslingen, https://ieeexplore.ieee.org/document/8835978

Contact

Dr. Yvonne Scholz, Department of Energy Systems Analysis, Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Pfaffenwaldring 38-40 | 70569 Stuttgart | Germany | vvonne.scholz@dlr.de

Supported by:

This presentation is based on results of the projects "INTEEVER" (FKZ 03ET4020A), "MuSeKo" (FKZ 03ET4038B), and "BEAM-ME" (FKZ 03ET4023A), all funded by the German Federal Ministry of Economic Affairs and Energy (BMWi).

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Grid investments vs. Storage investments in the INTEEVER project

- Multiple scenarios with 55% or 85% GHG reductions in the European power sector
- Numbers at data points indicate factor between investements into transmission and storage capacity (technologies aggregated)
- Protest (upwards triangles): although grid CAPEX increased by factor 10 investments into grid still significantly higher than into storage

