

THRAINN FRIDRIKSSON

REGIONAL WORKSHOP ON GEOTHERMAL FINANCING AND RISK MITIGATION IN AFRICA

Comparative Analysis of Approaches to Geothermal Resource Risk Mitigation

Global Geothermal Development Plan

• Launched in 2013

- Goal to scale up investments in geothermal development
- \$250 million of concessional finance raised
- Focus on:
 - Reducing upstream risk
 - Leveraging private investments

• Pillars of the GGDP

Partnerships for Investment / Knowledge Sharing

- Reducing Drilling Risk course (WGC, 2015)
- Definition of Global Standards for Geothermal Resource Classification
- Geothermal Resource Risk Mitigation Mechanisms report
- Greenhouse Gases and Geothermal Utilization Technical Report
- GGDP Roundtables
- Gender and Geothermal Guidance Note
- Best Practices in Geothermal Exploration Data Management

Lending operations and TA to developing countries with geothermal potential

- Armenia
- Djibouti
- Chile
- Colombia
- Dominica
- Fiji
- Indonesia
- Kenya
- Mexico
- Nicaragua
- St Lucia
- Tanzania
- Turkey

Comparative Analysis of Approaches to Geothermal Resource Risk Mitigation

PUBLISHED BY ESMAP IN APRIL 2016

- Authored by sector experts and World Bank specialists
 - Subir Sanyal, Ann Robertson-Tait, Migara Jayawardena, Jerry Huttrer, and Laura Berman
- Historical review of geothermal risk mitigation approaches around the world
 - Analysis includes the global portfolio of geothermal power projects commissioned before 2014 – about 12 GW
 - Support mechanisms for geothermal development analyzed for each project
 - Focus on upstream support

• Four main approaches to upstream support emerge

- Fully Public Development
- Public-Private Cost Sharing
- Geothermal Resource Risk Insurance
- Early Fiscal Incentives
- Other modes of public support include
 - Feed-in tariffs, Renewable Portfolio Standards, tax credits, public investment in of infrastructure

Fully Public Development

• This approach has been used in 12 countries

- Most capacity in Mexico, Iceland, Kenya, El Salvador and Costa Rica has been developed by public sector
- Originally the main approach but most countries have now opened up for private developers
- Over 3.6 GW developed by Public Model
- Requires a strong commitment from Government¹
 - Human and technical capacity
 - Financial resources
- Not easily scalable
- This approach used by KenGen and EEP (formerly EEPCO)

Cost Sharing

• Cost Sharing has been used in 11 countries

- Most capacity in Philippines, Japan and Turkey developed through this approach
- 3.0 GW developed through Cost Sharing
- Two main approaches
 - Public exploration drilling
 - Private exploration drilling with public financial support
- Allows more rapid development under right conditions
 - Government committed to rapid geothermal development
 - Qualified and committed developers
 - Transparent selection of developers key to success
 - If government carries out exploration drilling quality is critical

Cost Sharing Modalities

6

ESMAP

The Turkish Geothermal Boom

- The growth of the Turkish geothermal sector since 2007 is unparalleled
- Government target of 1000 MW before 2023 will surely be exceeded
- Several key enabling factors
 - Legal reform (Geothermal Law 2007)
 - Feed-in-Tariff (2010)
 - Strong local private sector
 - Technical and human capacity
 - Commercial financing for renewable energy projects (with support from IFIs)
 - Availability of publicly derisked geothermal fields through MTA exploration drilling

Based on: Alexander Richter (GeoLAC2017) -Source: ThinkGeoEnergy Research (2017), JESDER (2017), EnerjiAtlasi (2017), IGA (2015)

Japan and USA – Two examples of successful cost sharing

CURVES SHOW GROWTH OF INSTALLED CAPACITY OVER TIME

8

Geothermal Resource Risk Insurance

- Insuring specific well productivity
- Successful modality has not been rolled out globally
 - Only a few tens of MWs developed using Resource Risk Insurance
 - Geothermal insurance fund in place in France
 - Examples of application in Germany
 - Failed attempts in US, Turkey,
- High premium and high transaction cost major obstacles
 - Small market and relatively high resource risk
 - Each project requires intense due diligence
- Efforts underway to explore different insurance scheme designs
 - Portfolio approach (insuring specific productivity of a number of wells)
 - Backstopping by public concessional funds (Mexico)

- Typically exemptions from import duties and taxes
- Akin to the cost sharing schemes
 - More modest impact on developers
 - No up-front public support (lost revenues)
- Widely used on different levels
 - Reduction in taxable income (Indonesia)
 - Tax deductions for investments (Mexico)
 - Exemptions of taxes on imported machinery (Indonesia and Philippines)
 - Exemption from all taxes other than income tax (Philippines)
- Hard to quantify impact
 - Likely accelerated development in some cases

Current MDB support to Geothermal Development

FOCUS ON UP-STREAM ACTIVITIES UNDER COST SHARING APPROACH

• Strong focus on geothermal

- Since 2011 ~14% of WB financing for non-hydro renewables to geothermal
- Understanding of the value of baseload power
- Understanding of the need for support at early stages
- Currently active geothermal support projects in at least 33 countries
- Attention is shifting towards support to upstream activities
 - In 2012 to 2017 28% of MDB financing for exploration drilling and risk mitigation compared to 6% in 1978 to 2011

Climate Investment Finance Active geothermal projects by development stage

Volume of funding in US\$ million

III & IV

IV

16

11 & 111

CIF projects and GRMF and GDFLAC

Single country projects Regional support programs Single country and regional support

Climate Investment Finance Active geothermal projects by development stage

Number of projects

Key-messages

- High resource risk and relatively high upfront investment cost are the key barriers to scaling up of geothermal power development globally
- Development of geothermal resources for power generation at competitive costs **requires public intervention** to absorb some of the resource risk
- There are different ways to structure this intervention but some are effective than others at **scaling up** development
 - Cost sharing at exploration drilling stage
 - Public development at exploration stage
- These approaches:
 - Optimize the use of public resources
 - Leverage substantial private investments
 - Draw on the private sector technical expertise
- MDBs increasingly promoting cost sharing as the appropriate approach to geothermal development

Thrainn Fridriksson tfridriksson@worldbank.org

Thank You.

The World Bank | 1818 H Street, NW | Washington DC, USA

