

Renewable Energy Auctions Analysing 2016 IRENA – Energy Community Workshop on Renewable Energy Auctions 8 March 2017

Renewable Energy Auctions

Recent highlights

Downward trends in South Africa

- Investor confidence and learning curve
- Design of the auction
- Existing domestic solar industry

Local content requirements and achievements in South Africa

Source: Submitter, Montmasson-Clair, and Das Nair (2015).

Ups and downs in India

- Auctions are decentralized (national and state level) with diverse conditions
- Domestic content requirements in some state auctions
- Relatively higher prices compared with Peru, the United States and South Africa

The effect of inflation indexing on contract price

Note: the figure aims to show the remuneration of indexed/non-indexed contracts under nominal and real terms. A contract price of USD 100/MWh and 4% inflation were used in this example, for illustrative purposes.

Lower prices in the United States

Investment tax credit, *the federal solar*

tax credit, reduces the cost of

installation by about 30%.

US solar prices: actual vs. estimated effective prices, February 2013-May 2016

Higher prices in Germany

Capacity factor average 11%

Costs of installing and operating solar

plants (land, labour, etc.)

Solar prices in France and Germany: actual results vs. adjusted result assuming a benchmark capacity factor of 25%, February 2010-August 2016

Remuneration profile in Abu Dhabi in the United Arab Emirates

Energy delivered from June to September counts for 1.6 times as much as energy delivered from October to May

Therefore, the bids do not reflect the actual remuneration of the project.

Abu Dhabi's solar auction: bid submitted vs. actual remuneration

Source: based on data from BNEF, 2016.

Price trends: onshore wind auctions

Price trends: onshore wind auctions

A sharp decrease in Mexico

Investor confidence and learning curve

Economic signals for project location

Locational signals and offered capacity in each location: first vs. second Mexican auction

Source: based on Strategy &, 2016.

Price trends: onshore wind auctions

Fluctuating prices in Brazil

- Project lead times
- Intensified competition
- Availability of concessional financing
- Depreciation of the local currency
- Auction design

Brazil wind auction results

Country-specific conditions:

- Cost of finance (access to finance, ease of doing business, etc.)
- Cost of labor, cost of land, etc.
- Renewable energy resource availability

Investor confidence and learning curve:

- Credibility of off-taker
- Periodicity of auctions (as part of a long-term plan)
- Confidence from past auctions
- Lessons learnt from past auctions (auctioneer and bidders)
- Reuse of documents/studies from past rounds

Systematic auctions and the learning curve impact

Country	Renewable energy technology	First iteration	Second iteration	Learning curve impact
South Africa	Various	2011: 53% bids qualified	2012: 64.5% bids qualified	+11% increase in bid qualification rate
India	Solar PV	2010: 12.16 INR/ kWh	2011: 8.77 INR/kWh	28% decrease in contracted price
California (USA)	Various	2011: 92 bids received	2012: 142 bids received	+54% of bids received

Source: IRENA and CEM, 2015.

Policies and measures supporting renewable energy development

- National plans and targets
- Fiscal incentives (tax credits, exemptions, accelerated depreciation, etc.)
- Grid access and priority dispatch
- Socio-economic benefits

NATIONAL POLICY	REGULATORY INSTRUMENTS	FISCAL INCENTIVES	GRID ACCESS	ACCESS TO FINANCE [®]	SOCIO-ECONOMIC BENEFITS ^b
 Renewable energy target Renewable energy law/ strategy Technology- specific law/ programme 	 Feed-in tariff Feed-in premium Auction Quota Certificate system Net metering Mandate (<i>e.g.</i>, blending mandate) Registry 	 VAT/ fuel tax/ income tax exemption Import/export fiscal benefit National exemption of local taxes Carbon tax Accelerated depreciation Other fiscal benefits 	 Transmission discount/ exemption Priority/ dedicated transmission Grid access Preferential dispatch Other grid benefits 	 Currency hedging Dedicated fund Eligible fund Guarantees Pre-investment support Direct funding 	 Renewable energy in rural access/cook stove programmes Local content requirements Special environmental regulations Food and water nexus policy Social requirements

IRENA and CEM, 2015

The way forward in planning and designing auctions

- Understanding the reasons behind the recent low prices is important to make informed policy choices
 - The low prices attained can be due to additional financial support, indexed contracts, or additional remuneration during periods of peak demand, etc.
- Concerns with auctions underestimating the true costs of renewable energy (e.g. balancing costs of renewables) or causing overly aggressive bidding
- Risks of underbuilding and delays can be reduced with solid contracts, enforceable penalties, and legal and regulatory stability. However, stringent compliance rules may deter the participation of small and/or new players
- The extent to which the results are affected depends on choices regarding the design elements and how well adapted they are to the country's specific context (economic situation, structure of the energy sector, maturity of the power market and level of renewable energy deployment)
- The complex and dynamic environment of renewable energy auctions motivates constant innovation in the mechanisms' design. The assessment of previous implementations and the most recent experiences is crucial

International Renewable Energy Agency

Thank you!