Technical challenges and solutions for the integration of low-grade heat sources into existing networks and buildings

Jakob Zinck Thellufsen, Assistant Professor & Brian Vad Mathiesen, Professor

Aalborg University

Three focus areas for buildings

FUTURE GREEN BUILDINGS A KEY TO COST-EFFECTIVE SUSTAINABLE ENERGY SYSTEMS

Smart Energy Systems

Agenda

- Current status on district heating
- Low temperature district heating
 - Technical aspects
 - Utilisation of renewable sources
- The role of low temperature district heating in Smart Energy Aalborg

District heating in Europ

https://www.sciencedirect.com/science/article/pii/S13 64032116301149

AALBORG UNIVERSITY Denmark

Potential for heating in Europe

- Heat Roadmap Europe 1 and 2. Focus on 27 EU countries together.
- Stratego / Heat Roadmap Europe 3
 - Concrete plan for 5 EU countries
- Heat Roadmap Europe 4
 - Concrete plan for 14 countries in EU.
- https://heatroadmap.eu/

■Baseline 2015 ■Baseline / CD 2050 ■ Interval of feasible share of DH ◇ HRE 2050 modelled level of DH

Steam systems (1st generation)

- High temperature
- Predominantly in systems before 1930
- High losses
- Can be used for industrial processes

High temperature water systems (2nd generation)

• 1930-1980

- Still remains in parts of the current water based systems
- Pressurized high temperature water (>100 °C)

Medium temperature water systems (3rd generation)

- 1980-2020
- The current system in most Scandinavian systems
- Between 70-95 °C

Low temperature district heating (4th generation)

- Utilise more of the energy
- Enable use of low temperature renewable sources

http://www.4dh.dk/

Transitioning to low temperature district heating

- Proper design of networks and consumer connections
- Right compatibility with the buildings stock
- Existing district heating systems
 - Adapting installations
 - Potential retrofitting of buildings
- New development areas and new district heating systems
 - In low energy buildings, low temperature district heating can be especially suitable

Compatibility with existing building stock

- Space heating
 - Poorly insulated buildings require more energy
 - Current equipment might not be scaled for low temperature district heating
 - Equipment changes
 - Renovation of the building stock
 - Introduce thermostatic valves to control comfort levels
- Domestic hot water
 - Low temperature can lead to legionella in the water tank
 - Plate heat exchanges can be a solution

Compatibility with existing heat network

- Lower temperature can lead to higher flow rates
 - Low supply temperature requires that the return temperature is lowered too
 - From 80-40 to 50-20, still have a higher temperature difference
- New excess heat sources can require new networks
- Boosting technology can become relevant
 - To increase temperature from a supply source
 - To increase temperature certain places in the grid in cold seasons

Heat pumps

AALBORG UNIVERSITY

- Large scale heat pumps
- Coupled with the DHC system
- Supports both heating and cooling
- Boost temperature of lowtemp. sources
 - Data centre, Sea/lake/river water, Sewage water, abandoned coal mine, etc.
 - Energy recovery from thermal storage.
- Boost temperature at certain points in the networks
 - E.g. DHW supply
 - E.g. the furthest points

Integration of renewable energy

DENMARK

- Geothermal
 - Utilise heat either through heat pumps or directly in the network
 - Most resources are low to medium temperature

- Solar thermal
 - Seasonal by nature
 - Potential for large thermal storages
 - Requires space

Utilising storages in the district heating system

AALBORG UNIVERSITY

Borehole thermal energy storage (BTES)

- Typically the upper 20-200m of the ground used for energy storage in the rock/soil.
- Up to 90°C can be stored

Mine thermal energy storage (MTES)

- Used for storage of surplus heat in abandoned coal mine.
- Co-location with demand for heating and cooling

Aquifer thermal energy storage

 Underground water reservoirs used for heat storage (<30 °C ->60 °C)

Tank thermal energy storage (TTES)

 Tanks installed on/under the ground and filled with thermal storage medium

4GDH's role in Smart Energy Aalborg

AALBORG UNIVERSITY

- The goal is to transition Aalborg to 100% renewable energy
- Utilising the principles of smart energy systems and low temperature district heating
- Current system is 3rd generation district heating

Current system in Aalborg

Transitioning to renewable energy

- The transition has to be done in a way that does not limit other countries, cities and municipalities to transition to renewable energy
- Limiting biomass use
- Including transport based on both local and global transportation
- Defining the industrial demand related to inhabitants

Included benefits from low temperature district heating

- Low temperature district heating is a key part of the vision
- Allows for better efficiencies in heat pumps
- Allows for lower losses in the district heating grid
- It requires investments in energy savings in the buildings

Retrofitting of buildings

0.4

0.35

0.3

0.25

0.2 0.15 0.1

0.05

0

0.8

0.9

EUR/kWr

AALBORG UNIVERSITY

- Savings implemented based on specific geographic analysis
- Investments in heat exchanges suited for low temperature heating

1.7

1.8

1.6

1.5

1.3

1.4

Heat demand in the Aalborg district heating area [TWh]

1.2

1.1

https://journals.aau.dk/index.php/sepm/article/view/3398/ 3184

Industrial waste heat

- Low temperature district heating enables increased use of industrial waste heat
- Cement industry in Aalborg
 - Currently 20% of the heat demand
- In total a potential to increase from 1200 TJ to 3100 TJ
 - We use 2600 TJ

Project	Investment	Additional production
Delivery at 65 degree	None	500 TJ
Optimisation of existing facilities	None	385 TJ
New heat utilization from gray cement	48 mil. DKK	350 TJ
Lower return temperature by installing a heat pump	16-25 mil. DKK	122 TJ
Capture radiation heat	225 mil. DKK	540-610 TJ
Utilise heat from water filtration by by installing heat pump	7-9 mil. DKK	45 TJ

Heat pumps and geothermal

AALBORG UNIVERSIT

- Utilise 100 MW thermal capacity on heat pumps
 - Can be seawater heat pumps or geothermal
- 20 MW heat pumps running on waste heat from industry
- Utilisation of a large 40 GWh seasonal storage

The 100% renewable Smart Energy Aalborg

If no low temperature district heating

- We do not gain benefits from reduced losses and increased efficiencies
- Result of not achieving savings

If no industrial excess heat

• We might not be able to rely so much on excess heat from the cement industry

If no district heating

 If we do not have district heating, what is the consequence of changing to individual heat pumps

Summary

- It is technical possible
- It gives technical and socio economic benefits
- It requires planning

