Firewood from tree prunings on farm and biochar-producing cooking systems

Mary Njengaa,b, Miyuki Iiyamaa,c, James Kinyuaa,b, Ruth Mendumd,

aICRAF, bWMI, University of Nairobi, cJIRCAS, dPennsylvania State University
Why firewood and improved cooking systems?

Benefits

• It is treasured by communities, 9 of 10 households in rural sub-Saharan Africa use firewood for cooking and heating (IEA, 2006).

• Scarcity affects food and nutrition security

Health risks

• Collecting firewood from forest is life threatening, tiresome, repetitive, a waste of women’s potential, hugely non monetary

• Cooking with firewood on open fire produces over 100 times higher fine particulate matter (PM$_{2.5}$) than charcoal (Njenga et al., 2017).
Modernizing firewood cooking systems

(a) Prunings from trees on farm
(b) Biochar-producing cooking

In Embu, Kenya it’s an exclusive source of firewood for 40% (Njenga et al., 2017).

- Saves 40% fuel Vs 3 stone open fire
- Yield 20% charcoal/biochar
- Reduce CO, PM$_{2.5}$ by 40% and 90% Vs 3 stone oepn fire

Drying firewood

Biochar-carbon sequestration
Lessons, impacts and replicability

Combining sourcing firewood from multipurpose trees on farms and use of efficient cooking systems will have more impact.

For example, in Tanzania, on-farm wood supply ranged from 0.5-8 t/ha. Relative to three stone open fire, households using improved cook stove consumed 67% less firewood, saved 50% of fuelwood collection time and reduced gas emissions (PM_{10}) by 60% (Sererya et. al., 2017).

This approach is replicable in a wide range of landscape among small-scale farmers.

Acknowledgement: ICRAF, CGIAR-Water, Land and Ecosystems programme, Government of Japan, The Pennsylvania State University and Swedish Research Councils VR and FORMAS through KTH Royal Institute of Technology