

IRENA FIEXTOOI

TRAINING FOR MENA

SESSION 4: Modelling flexibility options from supply to demand-side flexibility

Flexibility options according to IRENA

Flexibility needs to be harnessed in all sectors of the energy system

STIRENA

POWER SYSTEM FLEXIBILITY FOR THE ENERGY TRANSITION

PART 1: OVERVIEW FOR POLICY MAKERS

> November 2018 www.irena.org

 $\bigcirc \bigcirc \bigcirc$

πU

-

Electricity Storage

Electricity Storage Valuation Framework

Electricity Storage Valuation Framework:

IRENA

FlexT

SS IRENA

Assessing system value and ensuring project viability

March 2020

Modeling electricity storage in IRENA FlexTool

- Electricity storage is defined in "unit_type" sheet, with few additions compared to other generators:
 - Efficiency (%) Discharging efficiency
 - Eff.charge (%) Charging efficiency
 - Self discharge loss (% of content per hour) if any
- In "units" sheet the following is defined:
 - Capacity (MW) Installed capacity in MW
 - Storage (MWh) Maximum storage capacity in MWh
 - Storage start/finish Initial and final state of the storage
- If storage type is pumped hydro storage it is possible that the unit has a natural inflow, which could be defined in "ts_inflow" sheet

IRENA

FlexT

Investment mode for batteries

Two options: Fixed P/E ratio or free optimisation

Option 1: Fix power to energy ratio

- Model the batteries with a fixed power to energy ration, this is to say, with a fixed discharge duration (*e.g.*, 2 hours or 4 hours batteries
- Only investment cost required is the one to invest in energy (battery cells)
- In this example the model would only consider 1 hour duration batteries in optimisation

Option 2: Free optimisation of power and energy

- It is also possible to optimise separately power and energy
- In this case there is no need to defined a P/E ratio but an investment cost for power (inverter) and energy would be required

Electric Vehicles

Smart Charging of Electric Vehicles

Fuente: Innovation outlook: Smart charging for electric vehicles, IRENA, 2019

Modelling unidirectional charging of EVs

Pre-calculating demand profiles

- EVs as predefined demand profiles that are added on top of the original demand curve
- Three charging scenarios:
- Evening uncontrolled charging
 - As soon as EVs arrive home, they charge at maximum power
 - Night controlled charging

2

3

- Charge is distributed along the night
- Day controlled charging
 - Charge coincides with the solar PV profile
- In FlexTool: Sum these profiles to the demand curve and add it in "ts_energy" sheet

Modelling Vehicle-to-Grid in FlexTool (V2G)

IRENA FlexT

- **Electromobility Grid**
 - Defined demand profile in "ts_energy" sheet
 - This demand would represent discharge of battery because of
- We need to estimate this demand
 - Define reserve profile in "ts_reserve" sheet
 - This is used to represent the amount of EVs that are connected to grid in a
- Existing software to estimate this

Define a unit that transfers energy from mobility grid to electricity grid and vice versa

Electricity Grid

Power-to-hydrogen

Green hydrogen for the energy transition

Modelling Power-to-hydrogen in IRENA FlexTool

Hydrogen Grid

demand in the system

Demanu

Hydrogen Storage

Other production methods

 Defined exactly the same as electricity storage but in hydrogen grid (see slides on electricity storage)

Defined demand profile in "ts_energy" sheet

This demand would represent hydrogen

- In FlexTool a hydrogen network with different nodes could also be modelled
- In hydrogen grid other methods of hydrogen production can also be modelled in a simplified way
- Examples: steam methane reforming (SMR)

IRENA

FlexT

Electrolysers and Fuel Cells

- Unit that absorbs electricity and converts it to hydrogen to be used in that grid
 - In "unit_type" define the main characteristics of the electrolyser depending on its chemistry
 - For example: efficiency ("conversion eff."), ramping capabilities, lifetime, etc.
 - In "units" define installed capacity per node as with generators
 - Main issue with electrolysers today is lack of real data about their characteristics

- Unit that absorbs hydrogen and converts it back to electricity
- In "unit_type" define main characteristics of the fuel cell. Note that efficiency is also "conversion eff."
- In "units" define installed capacity per node as with generators
- Likewise we can model a gas turbine or any other generator that uses hydrogen as an input

IRENA

FlexT

Transmission

Transfers, 1/2

- Transfers between nodes are defined in "nodeNode sheet"
 - Both nodes have to be from the same grid
 - Existing transfer links can have different capacity to different direction
 - Future investments will always have equal capacity to both directions

	А	В	С	D	Е	F	G	н	I	J	К	L	м	Ν
1	grid	node1	node2	cap.rightward (MW)	cap.leftward (MW)	invested capacity (MW)	max invest (MW)	loss	inv.cost/kW	lifetime	interest	annuity	HVDC	color in results
2	elec	nodeA	nodeB	150	150		0	0.01	100	50	0.08	0.082	0	
3	elec	nodeB	nodeC	100	100		0	0.01	100	50	0.08	0.082	0	

nodeNode sheet

- Transfer with losses requires at least two variables
 - A linear equation with 'loss x transfer' would mean that in the other direction loss is actually a gain
- The loss can be used to make the model 'leak'
 - Instead of curtailing VRE, the model can dissipate energy by transferring in two directions at once
 - Can be controlled only with a binary variable (not allowed in FlexTool)
- Hence, three variables: transfer, transfer rightward and transfer leftward
 - Transfer does not contain loss
 - Transfer rightward allows losses and helps to limit the leakage
 - Transfer leftward helps to limit the leakage further

Demand response

Demand-side flexibility for power sector transformation

<u>_</u>

500

Power-to-heat

Power-to-hydrogen

Electric vehicles

Smart appliances

Industrial processes

IRENA

FlexT

Modeling demand response in the IRENA FlexTool

- Demand response is defined in "unit_type" sheet, as if it was a generator. Defined as:
 - **Demand response increase** Generator with negative price and empty charging efficiency
 - **Demand response downwards** Generator with positive price and efficiency

unit type	efficiency	min load	eff at min load	ramp up (p.u. per min)	ramp down (p.u. per min)	O&M cost/MWh	availability	max reserve	inertia constant (MWs/MW)	fixed cost/kW/year	inv.cost/kW	inv.cost/kWh	fixed kw/kwh ratio	conversion eff	startup cost	min uptime (h)	min downtime (h)	eff charge	self discharge loss	lifetime	interest	annuity	non synchronous
demand_incr				1.00	1.00	-15.0	1.00	1.00										1.00		10	0.08	0.149	0
demand_decr	1.00			1.00	1.00	100.0	1.00	1.00												10	0.08	0.149	0

- In "units" sheet the following is defined:
 - Capacity (MW) If the demand response is an increase then negative maximum capacity and if it is to decrease then positive

Power-to-heat

Modelling Power-to-heat in IRENA FlexTool

Electricity Grid

Heat Grid

- Defined demand profile in "ts_energy" sheet
- This demand would represent heat demand in system

Thermal Storage

- Defined exactly the same as electricity storage but in heat grid (see slides on electricity storage)
- Usually use the property: "self-discharge loss"

- Defined exactly the same as a generator but in heat grid (see slides on generators)
- Examples: solar thermal, gas boilers, etc.

Power-to-heat devices (NEXT SLIDE)

Power-to-heat devices in IRENA FlexTool

- Power-to-heat devices can be heat pumps or electric boilers that convert electricity to heat •
- Defined similar to generators with some peculiarities: ۲

unit type

heat pump

Static efficiency – Defined directly in "unit_type" sheet as "conversion_eff" ۲

Dynamic efficiency – Activate option in "units" sheet and then define it in "ts_unit" sheet

grid

node

unit

unit_ts_param efficiency nit_ts_param efficiency 1 nit_ts_param		0	0					
Time 1 <th>Ĕ</th> <th>ati a</th> <th>rati</th> <th></th> <th>-</th> <th></th> <th>unit_ts_param</th> <th>efficiency</th>	Ĕ	ati a	rati		-		unit_ts_param	efficiency
u u	cy ti	aner 1	enei	lin	plie	Time		
¹ / ₂	cien	i i	ğ	ē	nulti	t0000		2.50
No. No. <td>effi</td> <td>Ē</td> <td>Ē</td> <td>Ē</td> <td>M NO</td> <th>t0001</th> <td></td> <td>2.60</td>	effi	Ē	Ē	Ē	M NO	t0001		2.60
t0003 2.80 t0004 2.90 1 1	nse	nse j	nse	nse	infle	t0002		2.70
t0004 2.90 1 1 1 1						t0003		2.80
1 1 1 t0005 3.00						t0004		2.90
			1	1		t0005		3.00

heat

heatA

heat pump

IMPORTANT: Define electricity as input grid and heat as output grid in the "units" sheet

Concentrated Solar Power (CSP)

Modelling CSP units in FlexTool

- » CSP is represented in the FlexTool as an additional single node grid with zero demand
- » The CSP grid is interconnected with electrical grid at a specific node

www.twitter.com/irena

www.facebook.com/irena.org

www.instagram.com/irenaimages

www.flickr.com/photos/irenaimages

www.youtube.com/user/irenaorg