Energy Solutions for Cities of the Future: Enabling the Integration of Low Temperature Renewable Energy Sources into District Heating and Cooling Networks



## WEBINAR 1:

Strategic heating and cooling planning for the integration of low-temperature renewable energy sources in district energy networks: What key success factors?

20 April 2020

Webinar 1: 20 April 2020 - strategic heating and cooling planning for the Integration of low-temperature renewable energy sources in district Energy networks: what key success factors?

□Webinar 2: 14 May 2020 - Integration of low-temperature renewable energy sources into existing district energy networks and buildings

Webinar 3: 25 May 2020 - Enabling framework conditions, financing and business models Opening remarks - Gurbuz Gonul, Director, Country Engagement and Partnerships, IRENA

Presentations

□ Integration of low-temperature renewable energy sources in district heating and cooling: Main drivers and enablers - Luca Angelino and Jack Kiruja, IRENA

Technology specific focus: Challenges and innovative solutions for integrating solar thermal into district heating and cooling – Christian Holter, CEO, Solid

Developing an effective strategic heating and cooling plan: What key success factors? Prof. Brian
 Vad Mathiesen and Nis Bertelsen (Aalborg University); and Jack Kiruja, IRENA

Case study presentation from France - Paul Bonnetblanc, Ministry for the Ecological and Inclusive Transition

Questions and answers

## Speakers

| Gurbuz Gonul           | Christian Holter           | Brian Vad Mathiesen           |
|------------------------|----------------------------|-------------------------------|
|                        |                            |                               |
| Director,              | C.E.O,                     | Professor,                    |
| Country Engagement and | Solid Solar Energy Systems | Energy Planning and Renewable |
| Partnerships, IRENA    |                            | Energy Systems, Aalborg       |
| 6004                   |                            | University                    |

| Nis Bertelsen       | Jack Kiruja         | Paul Bonnetblanc         | Luca Angelino      |
|---------------------|---------------------|--------------------------|--------------------|
|                     |                     |                          |                    |
| PhD fellow, Aalborg | Associate Programme | Policy officer,          | Programme Officer, |
| university          | Officer,            | Geothermal energy and    | IRENA              |
|                     | Geothermal Energy,  | CCUS,                    |                    |
|                     | IRENA               | Ministry for the         |                    |
|                     |                     | Ecological and Inclusive |                    |
|                     |                     | Transition, France       |                    |





GLOBAL GEOTHERMAL ALLIANCE

## Integration of low-temperature renewable energy sources in district heating and cooling: Main drivers and enablers

20 April 2020

## Context – Status and key role of heating and cooling in buildings and cities

#### Status: High share of individual heating systems & fossil fuels

- 55% of world population reside in cities. Expected to rise ٠ to 68% by 2050
- 65% of energy consumption takes place in cities, and cities ٠ generate 70% of carbon emissions.
- Heating sector accounts for about 50% of the global ٠ energy demand, 90% of heating is generated from fossil fuels (results in emissions and pollution).
- Individual standalone fossil-based heating systems are ٠ dominant (inefficiency in operation and pollution)

#### Global buildings sector final energy consumption by end-use









## Integration of low-temperature RE in district energy

### Main Drivers

- Reducing air pollution
- Increasing concerns on security of supply
- $\circ$   $\,$  Decarbonisation objectives for the heating sector  $\,$

## Main Enablers

- Improved EE in buildings, requiring lower temperature heating systems
- Increased efficiency of heat pumps, enabling harnessing of low-T resources at shallow depths
- Development of new generation district heating, allowing integration of low-grade geothermal and other RE sources
- $\circ$  Thermal storage



Illustration of the concept of 4th Generation District Heating in comparison to the previous three generations. *Source: Lund et al. (2014)* 

## POTENTIAL SOURCES DISTRICT ENERGY

#### Solar Thermal



#### Water sources



Cannot efficiently exploit these sources without district heating and cooling infrastructure

#### Industry, data centers, many sources



#### Low- temp. Geothermal



https://www.veks.dk/da/om-veks/varmeproduktion/geotermi https://www.licitationen.dk/project/view/1704/facebook\_datacenter\_odense http://dk.arcon-sunmark.com/nyhederogmedier/vojens-district-heating-denmark

## POTENTIAL SOURCES DISTRICT ENERGY – Example of geothermal applications

Low – medium -temperature geothermal resource (China)

Abandoned coal mines: Mieres (Barredo), Asturias, Spain



#### Example of projects

- Hebei
- Shaanxi
- Shandong



#### Co-production from oil and gas wells (La-Teste, France



Ultra low-temperature geothermal resources (Paris Saclay)



## **Different scenarios**



#### Different applications of LTDH and potential needed modifications of the elements of the system

| TING AREA          | Adaptation of consumers<br>connections, substations, and<br>in-house installations for<br>space heating and domestic<br>hot water preparation<br>Potentially need for<br>retrofitting the network, if the<br>network is not oversized. | Adaptation of consumers<br>connections, substations, and<br>in-house installations for<br>space heating and domestic<br>hot water preparation |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| V DEVELOPMENT AREA | New low-energy buildings with low-temperature heating<br>systems (under-floor heating or low-temperature radiators)<br>make LTDH supply particularly <b>suitable</b>                                                                   |                                                                                                                                               |

NEW DU OVETE



## Key focus areas

- Identification and coordination of stakeholders
- Assessing demand for heating and cooling
- Identifying and assessing geothermal, solar thermal, and other local heat sources
- Define optimum equilibrium between energy efficiency and supply

1. Strategic heating and cooling planning at national and local levels 2. Technical challenges and solutions at network and building level

- Assess compatibility with existing network
- Assess compatibility with existing building systems
- Define and implement integrated building renovation strategies and modernisation/fuel switch

Solar thermal solutions
Geothermal solutions
Project facilitation

• Training

4. Technologyspecific challenges and solutions

3. Enabling framework conditions, financing and business models

Ownership structure
Regulations
Financing and risk mitigation



#### GLOBAL GEOTHERMAL ALLIANCE



# **THANK YOU**

For further information: www.globalgeothermalalliance.org www.irena.org

