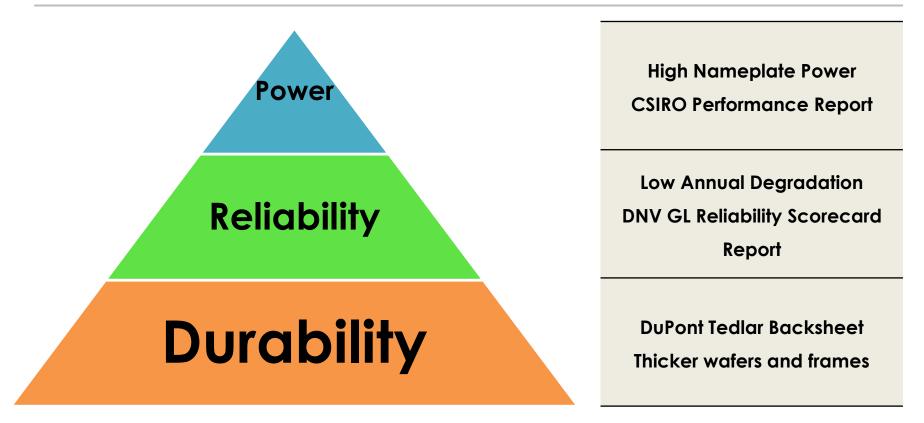


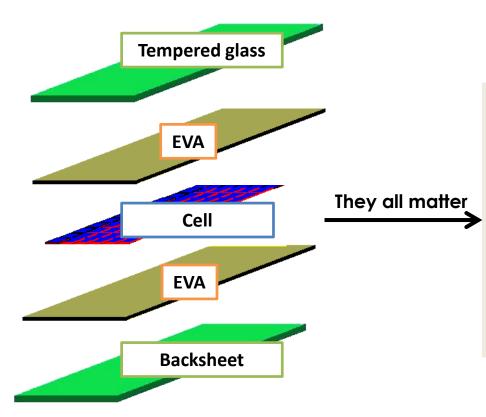
Topic: Why PV quality matters in Asia?

Date: May 2018

Author: Dr. Alex Li



How to ensure high quality?


- To provide quality benchmarking measures
- Consequences of module failures
- The financial implications
- Tips to ensure high IRR

The Solar Pyramid – build from the solid foundation

A supreme BOM selection to avoid <u>micro-cracks</u> and <u>backsheet failures:</u>

1. Thicker solar cells (imagine if you prefers a

thicker wall of you home?)

Strategic partner with Dupont to utilize
 Tedlar backsheets (imagine if you prefers
 denser construction materials of your wall?)

Pr	Premium raw materials				Jinko vs Key (
	Raw materi	als	Jinko	T-Company	C-Company	J-Company	H-Company]
Cell	Avg. Cell	Poly cell	≥210	200-210	200-210	200-210	200-210	\rightarrow Thicker cells
Cell	thickness	Mono cell	195-200	≈195	≈195	≈195	/	
Connector	Poly	60/72-cells	Jinko connector	MC4/H4/UTX/EVO3	T4/ PV2/H4	J-Company connector /MC4	MC4/UTX	
Connector	Mono	60/72-cells	/MC4/UTX					
	Poly (Main)	60-cell	TPT/TPE/TFB/KPF	TPT/TPE/KPF/PYE	TPT/TPE/KPF	TPT/TPE/KPF/KPE	FFC/PYE	
Backsheet		72-cell	TPT/TPE/TFB/KPF	TPT/TPE/KPF/PYE	TPT/TPE/KPF	TPT/TPE/KPF/KPE	FFC/PYE	
Backsneet	Mono	60-cell	TPT/TPE/TFB/KPF	TPT/TPE/KPF/PYE	TPT/TPE/KPF	TPT/TPE/KPF/KPE		→ Supreme
	(Main)	72-cell	TPT/TPE/TFB/KPF	TPT/TPE/KPF/PYE	TPT/TPE/KPF	TPT/TPE/KPF/KPE	/	backsheet

Superior point in BOM – Thickening and selection of material makes final products more Robust and Reliable. Risky point in BOM – Which may take risk in module's mechanical loading performance/reliability /safety.

A supreme BOM selection to avoid micro-cracks and backsheet failures.

4

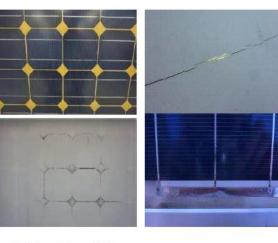
The Solar Pyramid – Backsheet Durability

Severe backsheet failures were observed in Australia to cause:

- 1. Unprotected module
- 2. Current leakage
- \rightarrow Tedlar backsheet can

avoid these critical issues.

The Solar Pyramid – Backsheet Durability


7

Is Module still Module after 10 Years?

Backsheet Type: PET

- 5 years old installation in Spain
- Yellowing and Cracking
- 32% power loss over 5 years (6.4%/year)
- Some modules failed wet leakage test – Safety Risks

Backsheet Type: PVDF

- 4 years old installation in North America
- Severe cracking and delamination of PVDF film
- 57% of the installed modules impacted

Backsheet Type: PET

- 9 years old installation in West China
- Severe cracking, chalking, peeling and yellowing

Backsheet Type: Polyamide (PA)

- 5 years old installation in Italy
- Severe cracking and delamination of PA film
- Inverter tripped due to current leakage

The Solar Pyramid – DNV GL Reliability Scorecard Report

DNV·GL	DNV GL Reliability Scorecard Report 2017							
PV Module Reliability		Test type	Thermal cycling	Dynamic mechanical load	Humidity-freeze	Damp heat	PID	
Scorecard Report	Test conditions	Standard test	200 cycles		3 cycles	1000 hours	96 hours	
2017		DNV test	600 cycles	1000 cycles	30 cycles	2000 hours	96 hours	
Report contributors Jenya Meydbray, VP Strategy & Business Development Frederic Dross, Head of Module Business		Top performance criteria	2%	2%	2.50%	1%	2%	
	2017	Jinko	Тор	Тор	Тор	Тор	Тор	
		T-Company	Тор	Тор	Тор	Тор	Тор	
		H-Company	Lower	Lower	Тор	Тор	Тор	
		Y-Company	Lower	Тор	Lower	Тор	Тор	
		L-Company	Тор	Тор	Тор	Тор	Тор	
		G-Company	Lower	Тор	Lower	Lower	Тор	
	2016	Jinko	Lower	Lower	Тор	Тор	Тор	
		T-Company	Тор	Тор	Lower	Тор	Lower	
		H-Company	Lower	Тор	Тор	Lower	Тор	
		Y-Company	Lower	Тор	Lower	Lower	Lower	
		L-Company	*	*	*	*	*	
		G-Company	*	*	*	*	*	

Strict quality control to ensure long term reliability \rightarrow report available upon request. Who does not participate in this test?

The Solar Pyramid – CSIRO Performance Report

		<u> </u>	4		<u> </u>			<u> </u>		
	View product >	View product >	View product >	View product >	View product >	View product >	View product >	View product >		
Test results	Canadian C \$6P-250P	JA Solar JAP6-60- 260/3BB	Jinko JKM250P-60-A	Q-Cells Q.PRO-G3 255	Renesola JC260M-24/Bb	Sunpower SPR-E20-327	Suntech STP250-20/Wd	Trina TSM-260PC05A		
Price (\$)	\$240	\$301	\$215	\$209	\$263	\$217	\$233	\$238		
est results										
Overall score (%) i	89%	85%	91%	84%	84%	85%	89%	87%		
leasured average power utdoors 12 months i	236.2	239.9	238.4	234.4	239.3	301.7	236.1	242.8		
leasured average power utdoors 3 months (W) i	234.7	235.4	234.7	229.5	235.4	298.1	231.4	239.5		
feasured power in lab hen new (W) i	250	252.6	254.7	250.3	251	322.2	247.8	258.5		
ield per 1000W by label 12 tonths (W) i	944.7	922.8	953.8	919.4	920.6	922.5	944.4	934		
ield per 1000W by label 3 nonths (W) i	938.6	905.4	938.6	900.1	905.5	911.6	925.5	921		
fficiency (%) i	15.6%	15.5%	15.6%	15%	15.4%	19.8%	15.2%	15.7%		
omments			i I							
ood points	 Very good performance across 12 months of outdoor testing. 	 Very good performance across 12 months of outdoor testing. 	 Excellent performance across 12 months of outdoor testing. 	• NO.1	perform	ance rat	lio in a 12	2-month		
ad points	 Nothing in particular. 	- Nothing in particular.	 Nothing in particular. 		P					
pecifications			i	f a lal	11					
laimed nominal power (W) i	250	260	250	field	Test.					
aimed power tolerance i	0 to +5W	0 to +5W	0 to +3%							
idth (mm)	980	991	990	A real difference in actual operating						
ength (mm)	1638	1650	1650	• A rec	ai ainterei	nce in ac	ciual ope	erating		

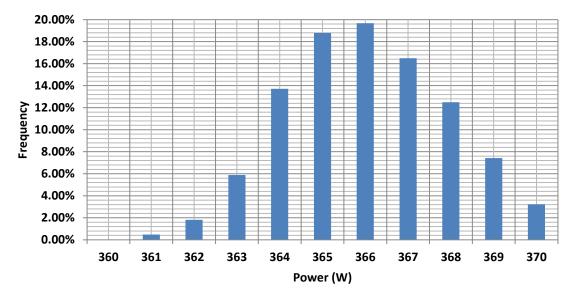
conditions in the field.

	Standard Mono as an example								
	Jinko	T-company	C-company	Q-company	J-company				
Nameplate power (W)		N	OCT power (V	V)					
325				239					
330			242	243					
335	250	250	246	246	244.9				
340	254	253	250	250	248.5				
345	258	257	253	254	252.2				
350	262	261			255.8				
355	266	264			259.5				
360	270	268							

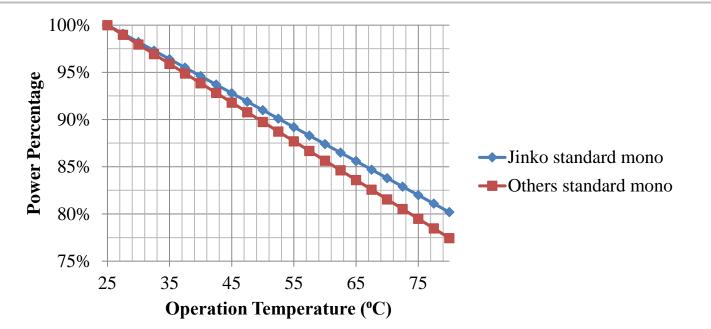
Take-home message: Jinko's excellent NOCT power output ensures high actual energy yield.

NB: all data extracted from public datasheets.

The two key factors:


- 1. +3% Power tolerance (Jinko 360W can be up to 371.8W, others can only go up to 355W)
- 2. Temperature Coefficient (Jinko does not lose as much power at high T

as others does).


Take-home message: our better temperature coefficient and 3% power tolerance ensures higher actual output in the actual operation.

JKM360M-72

The +3% power tolerance brings you more power from the same nameplate power.

At a module temperature of 75 degree C (or ambient temperature of 50 degree C),

Jinko module produces 2.5% more power than other brands.

Solar

The financial significance of quality

	Bankable	Never Heard	Not Ban	kable		
Canadian Solar		100%				
First Solar		100%				
JA Solar		100%				
対 Jinko Solar 📃		100%				
📩 🛠 Kyocera		100%				
X SunPower		100%				
📩 Trina 📃		100%				
LG Electronics	94%					
Panasonic	94%					
Solar Frontier	94%					
🖈 Hanwha Q CELLS 📃 🔤		94%		6%		
🖈 REC Group		88%		6% 6%		
🛧 Hyundai 📃		81%		13% 6%		
Sharp	75		6%	19%		
Renesola	75	%		25%		
🖈 Talesun 📃	69%		13%	19%		
ET Solar	63%		25%	13%		
Suntech	56%	6%	389	%		

Figure 1: BNEF's PV bankability survey (top 15)

Source: Bloomberg New Energy Finance Note: Stars indicate the 'top performers' within <u>DNV</u> <u>GL's 2017 PV Module Reliability Scorecard Report</u>. DNV GL did not test all of the manufacturers listed above, so a missing star is not indicative of poor quality.

The financial significance of quality

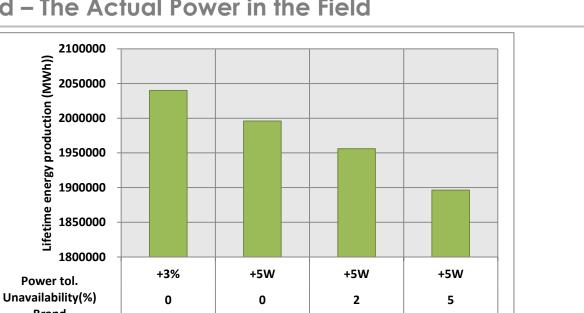
PROJECT	Basic	JINKO	Other Tier 1	Other Tier 1	Other Tier 1
Module Unavailability (%)		0	0	2	5
Positive Power tolerance(%)		+3%	+5W	+5W	+5W
Project capacity (MWp)	100	POLY	POLY	POLY	POLY
Module Power(W)		330	335	335	335
Module price (USD cents/Wp)		32	31	31	31
Power Warranty(year)		25	25	25	25
Temperature Coefficiency of Power(%)		0.4	0.4	0.4	0.4
First year degradation (%)		2.5	2.5	2.5	2.5
Annual degradation (%)		0.7	0.7	0.7	0.7
Positive Power tolerance(%)		3	1.5	1.5	1.5
Bifacial Factor(%)					
Ground reflection					
ANALYSIS RESULTS					
LCOE (USc/kWh)		5.66	5.77	5.90	6.11
IRR		15.65%	15.00%	14.16%	12.95%
Capital Invest		\$ 45,552,508	\$ 45,389,742	\$ 45,389,742	\$ 45,389,742
Land cost		\$ -	\$-	\$ -	\$ -
EPC cost(/Wp)		\$ 0.7592	\$ 0.7565	\$ 0.7565	\$ 0.7565
Module cost		\$ 19,199,981	\$ 18,599,535	\$ 18,599,535	\$ 18,599,535
Inverter cost		\$ 5,874,089	\$ 5,981,738	\$ 5,981,738	\$ 5,981,738
Mounting Construction cost		\$ 5,890,730	\$ 5,802,615	\$ 5,802,615	\$ 5,802,615
BOS cost (/Wp)		\$ 0.4392	\$ 0.4465	\$ 0.4465	\$ 0.4465
Lifetime energy production (MWh)		2040116	1996124	1956202	1896318
O&M Cost (\$)		\$-	\$-	\$ 393,705	\$ 984,262

Let's evaluate the financial value of performance, reliability and

durability \rightarrow 100MW PV project simulation.

The financial significance of quality

In this case, Jinko module is assumed to be 3% more expensive than other Tier 1 peers, but remember:


- 1. Module is not the only project component.
- 2. The outcome is what we care about.

energy production (MWh))

Lifetime

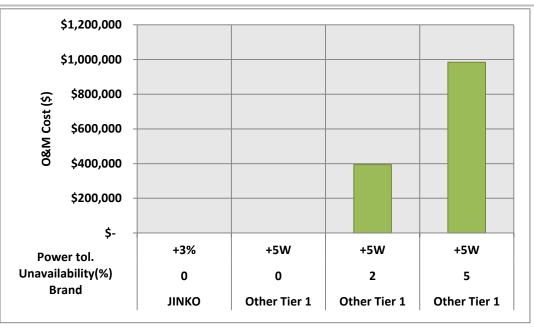
Power tol.

Brand

Other Tier 1

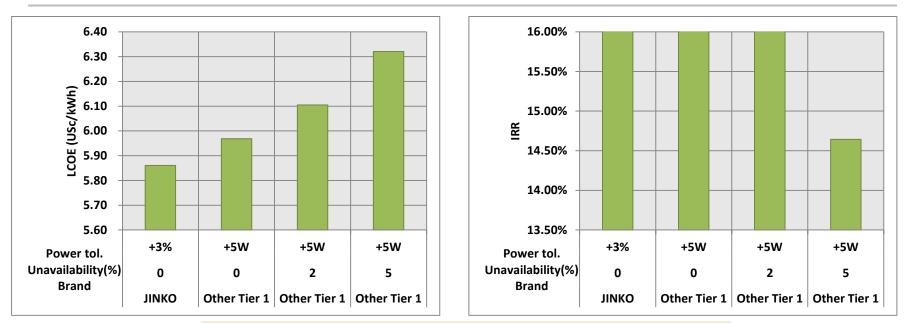
Other Tier 1

Distinct energy output through 25 years due to:


JINKO

- 1. Performance difference in hot climate;
- Module reliability and durability \rightarrow please refer to DNV GL report. 2.

Other Tier 1


Solar

Poor reliability and durability can result in high O&M cost, up to USD 1m. \rightarrow This can be avoided by evaluation about quality vs price.

Key to succeed a good PV investment:

- 1. Excellent actual outdoor performance;
- 2. High reliability and durability due to superior BOM.
- \rightarrow High IRR (up to 2.5% higher in this case).

Tips to consolidate a high IRR \rightarrow quantify everything rather than only \$\$\$:

- 1. Top performers at DNV GL reliability scorecard report
- 2. Superior BOM to minimize module failures
- 3. High outdoor actual performance
- 4. +3% power tolerance and excellent temp coeff

Head of technical service, APAC:

Dr. Alex Li <u>alex.li@jinkosolar.com</u>

"A new technology aims to reduce the electricity cost and make electricity

more affordable for the society, and this is what science is for."

- Prof. Stuart Wenham

The End

