

Grid integration of variable renewable sources – Overcoming technical and operational bottlenecks

Francisco Gafaro

The transformation of the power system IRENA

The transformation of the power system

Example in Germany

Source: 50Hertz

The transformation is happening everywhere regardless of its size

Challenges at different levels

Successful transformation requires:

- Political commitment stable regulatory framework
- Planning for coherent energy systems
- ✓ Innovative solutions

The technical Challenge

How to develop the system to maximize the value of VRE generation as it comes - and still ensure the security of supply?

Preconditions for secure system operation:

- ✓ Availability of power to cover demand (adequate generation fleet)
- ✓ Adequate network and associated infrastructure
- ✓ Availability of ressources to cover system imbalances in the operational hour
- ✓ System stability

Generation does not coincide with consumption

Data from: http://www.eirgridgroup.com

Variability and limited predictability

Transmission system adequacy

TRANSMISION SYSTEM OVERVIEW 2016

** Source: Transmission system restrictions study for 2016-2019, OC-SENI 2015

Different interaction with the grid ©

Conventional power pant

Source: CPES Virginia Tech

Solar power plant

- Physical principle, and included interface between the grid and the source of energy is different.
 - Robustness of the system and capability to control frequency and voltage may be affected (stability).
- Minimum grid performance requirements and technical assessment to identify security threads are required.

The technical challenges - Summary

Solutions for the recognised issues are already in place

- Provision of grid services from VRE
- Strong transmission grids.
- Interconnection with neighbour systems.
- Flexible conventional generation.
- Storage/ demand side management.
- Specialised forecasting and operational planning tools
- SmartGrids to SmartEnergy to optimize RES utilization across energy sectors and support price flexibility
- •

Looking forward for new innovative solutions

Planning the secure operation of the power system

Long term generation adequacy planning

Long term grid adequacy planning

Update of operational constraints / reserve requirements

Outage planning and programming

Day ahead generation scheduling & Security Checks

Real time operation

- Power system operation and planning aims to provide a reliable and efficient supply of electricity at any time.
- Operation of the power system is a very complicated and critical task that must be supported by a strong planning process.

Engagement with Member Countries

Cooperation with decision makers, network operators and technical experts at a global level supporting exchange of experiences on grid operation & expansion – Until now focus on small islands but moving towards larger interconnected systems

Dominican Republic (grid study), Antigua & Barbuda (grid study), Barbados (revision of studies), CARILEC (technical workshops), CUBA Workshop Planning and Operating the Electricity System

 ${\bf DIgSILENT,\,TU\,\,Darmstadt,\,TRACTEBEL\text{-}ENGIE}$

(Access to simulation Software, technical guides)

VRE Grid integration studies

RE Roadmaps

Grid Integration studies

Identification of technical constraints

Recommendations on grid infrastructure investments

Recommendations on Grid support functions to be provided by VRE / Planning & Operational procedures

Aim: Facilitate coordination between long-term, policy-driven RE targets and their actual deployment in the grid

General Approach: Assessment of reliability and security of the system with planned penetration levels of VRE through statistical analysis and electricity grid modelling & simulation

- Mid term time horizon (2 5 years)
- Cooperation with relevant stakeholders, <u>Flexible</u>
 and adapted to the country needs

Facilitation of exchange of experiences with network of top technical experts.

Guide: Planning of electricity grids in Small Island Developing States with VRE— A methodological guide

		Time horizons at which assessment is generally performed			Parts of the power system to be represented		
		Mid- and long-term planning (month to years ahead)	Operational planning (day to week ahead)	Real time dispatch (second to minutes ahead)	Load & generation	Transmission	Distribution
Generation adequacy							
Sizing of operating reserves				ı			ı
	Generation scheduling						
	Load flow & static security assessment						
Static	Voltage & reactive power control						
	Short-circuit currents						
Dynamic	System stability						
Special	Protection coordination						
	Power quality						
	Defence plans						(UFLS & UVLS)

Exchange of knowledge

- Webinars and technical workshops in partnerships with local stakeholders and regional organizations
- ✓ Global access and support in use of stability analysis software DigSilent PowerFactory
- ✓ Guides on grid stability and technical assessments for grid integration planning

Support in planning the operability in the Central America Clean Energy Corridor-

Panama

- High shares of VRE expected in the mid term.
- Associated technical challenges must be addressed.
- TSO has a very well stablished planning process already including impact of VRE.
- Project plan is currently under development with national stakeholders. Based on exchange of knowledge considered options include:
 - Improvement of simulation models
 - Assessment of current operational practices and system flexibility
 - Identification of additional constraints in the mid term
 - Facilitate exchange of knowledge

Illustration of potential VRE and impact on daily operation (wind assumed constant, using data from CND)

CONCLUSIONS

- The transformation of the power system is rapidly happening in developing and emerging countries quick action is required to support operability of systems in the mid term
- ➤ Challenges for the integration are at different levels, usually are addressed separately but can not be isolated. Holistic approach is required to support planning
- ➤ There is an enormous variety. Each power system is a unique case. Particularities define approach required for support / technical assessments
- ➤ The transformation of the power system is a journey with stop and review stages
- ➤ RE integration is a new field nothing is possible without people with the proper skills. There is knowledge and awareness in emerging countries but still a a lot of work to do

Francisco Gafaro fgafaro@irena.org

Isaac Portugal <u>iportugal@irena.org</u>