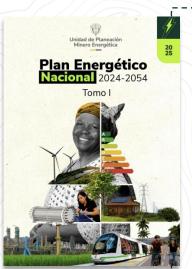


Colombia National Energy Figure 2025-2055

Johanna Castellanos


Deputy Director of Demand

Oct 2025

National Energy Plan (PEN)

What does it include?

Volume I Conceptualization

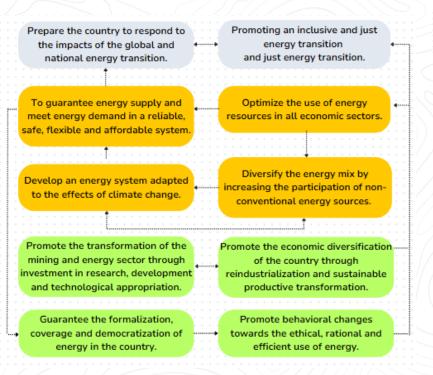
- . Colombia's energy system
- 2. Energy and climate change
- 3. Strategic planning approach for a **just transition**
- 4. PEN vision and pillars
- 5. Objectives
- 5. Strategic plans
- 7. Democratization of energy
- 8. Formulation of scenarios: Policies, regulations, roadmaps, and strategies
- 9. External factors analysis

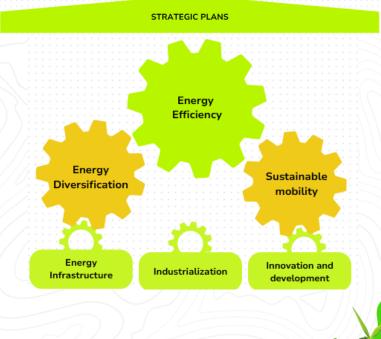
Volume II National PEN

- OSeMOSYS modified model (social and environmental variables)
- 2. National scenarios
- National cost-Benefit analysis

Volume III Regional PEN

- OSeMOSYS modified model (social and environmental variables)
- Regional scenarios (7 regions)
- 3. Regional cost-Benefit analysis


Objectives and Pillars 2025-2025


Pillar 1. Energy security and reliability

Pillar 2. Sustainability and carbon neutrality

Pillar 3.
Competitiveness
and economic
development

Pillar 4. Inclusivity and justice

Energy scenarios

Favorable economic, social, regulatory, and environmental context

Level of development and feasibility of binding policies.

A more favorable context implies greater institutional support, an enabling regulatory framework, adequate financing, economic development, available technology, and social support.

CARBON NEUTRALITY 2050 **ANNOUNCED POLICIES** STATED POLICIES (BASE)

Level of commitment from all stakeholders and scope of climate change mitigation goals.

Greater ambition implies compliance with emission reduction and decarbonization goals.

Climate ambition

How has the process of gathering strategic priorities, objectives, and scenarios been?

Feb 2024

Summary of the Co-development Stages

Develop long-term strategic outlooks and priorities for the sector

Aug - Oct 2024

PEN Objective Co-creation **Workshops**

Co-develop longterm objectives for the energy transition

Summary of the Codevelopment Stages

Nov 2024

Environment

Analysis Workshop

External factors that may influence the energy transition

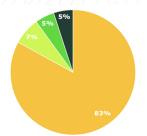
Mar 2025

Technical Workshops for Energy Scenarios

Validate perspectives and trends for the development of energy scenarios

Collaborative Development and Validation Spaces

How has the process of gathering strategic priorities, objectives, and scenarios been?



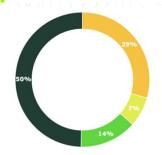
Feb 2024

Summary of the Co-development Stages

Develop long-term strategic outlooks and priorities for the sector

■ Private Sector ■ Academia ■ Public Sector ■ Civil society

Aug - Oct 2024


Private Sector

VO

PEN Objective Co-creation Workshops

Co-develop longterm objectives for the energy transition

Academia Public Sector

■ Civil society

Collaborative Development and Validation Spaces

Invitation sent to

140

stakeholders

Reception of a total of

239

proposals

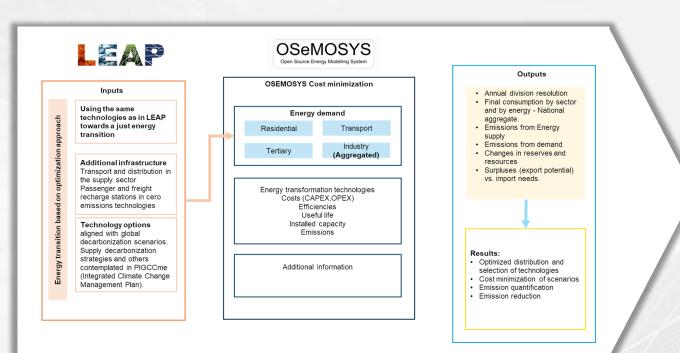
from

37

instituciones

ACOLGEN, AGREMGAS,, ANDEG, ANDI, ANH, ANM, ASOCAÑA, GASNOVA, ACP, CELSIA, CENICAÑA, CENIT, CIPAME, CREE, DNP, Ecopetrol, EIA, Enel Colombia, EPM, Fedebiocombustibles,, Minambiente, Minenergía, Minhacienda, Mintransporte, Minvivienda, SENA, SER Colombia, Sintracarbón, Sintraelecol, SSPD. TGI S.A., Vanti v XM.

National Energy Plan (PEN) 2025-2055



Strategic Plans

Main document

From cost minimization to maximizing social and environmental benefits

Social welfare maximization

OSeMOSYS modified

Cost minimization

New national energy planning model

UPME is designing a **new national energy planning model**, built upon the OSeMOSYS foundation, that shifts the focus from cost minimization to the **maximization of social welfare**, while integrating end-of-life management, material recovery, environmental and social dimensions, and regional context into a comprehensive decision-support tool.

Energy balance and production/use

Capacities

Resource availability, annual activity, and period

Emissions and limits

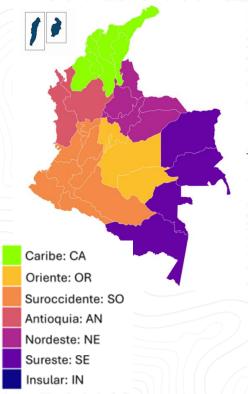
Additional social and environmental factors

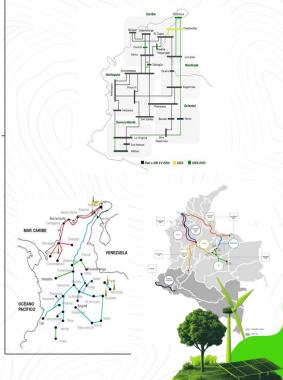
New national energy planning model

- End-of-life management and material recovery:
 final disposal phase of technologies, including recycling, reuse,
 and safe treatment of materials, to reflect their real
 environmental and economic costs.
- Refrigerant-related emissions
 greenhouse gases emitted by refrigerants
 wore accurate lifecycle emissions assessment.
- Employment creation and loss
 Socioeconomic dynamics -> job creation or displacement under different energy scenarios and technology transitions.
- Environmental impacts beyond CO₂
 Including land use, water consumption, and ecosystem impacts, not just CO₂ emissions.
- Social and territorial dimensions
 Local social acceptance, equity aspects, and territorial context variables that may affect renewable energy potential or cause delays in infrastructure deployment.
- Realistic regional energy potential
 Reflect geographical, environmental, and social constraints, providing more accurate estimates of exploitable resources.

 62 demands represented from the industrial, tertiary, residential, transport, agricultural, construction, coking, and refinery sectors, among others.

400 technologies


representing Colombia's energy production, transformation, transport, and end-use processes, as well as the potential to transition toward higher efficiencies and/or different energy carriers


Regionalization

- The aim is to divide the model into 7 regions
- Consideration of energy balances by region, including limitations of energy transport infrastructure between regions
- It allows for regional differences in energy demand, fuel availability and prices by area, and specific energy resource potentials to be incorporated.

Considering main Power and Oil and Gas transport infrastructure

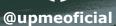
Environmental and social factors

Expand the model to include environmental variables (water consumption, greenhouse gas emissions, local pollutants) and social variables (land availability, job creation, location of industries), supporting analysis for a just energy transition.

It is proposed to integrate these variables using different approaches: monetization in the optimization problem; ex post calculations to estimate social impacts; or complementary models linked to the main energy model.

Define the final scope of the variables to be included based on the availability and quality of data for Colombia, adjusting the approach according to the progress of previous tasks and in coordination between UPME and DEA.

iTHANKS!



@upmecol UPME Oficial @upmeoficial

@upmeoficial

www.upme.gov.co