

Climate Change and Clean Heating

Tsolmon Namkhainyam, Mongolia Energy Program Officer 2022-05-20

Supporting Partner Governments to Achieve the SDGs and NDCs

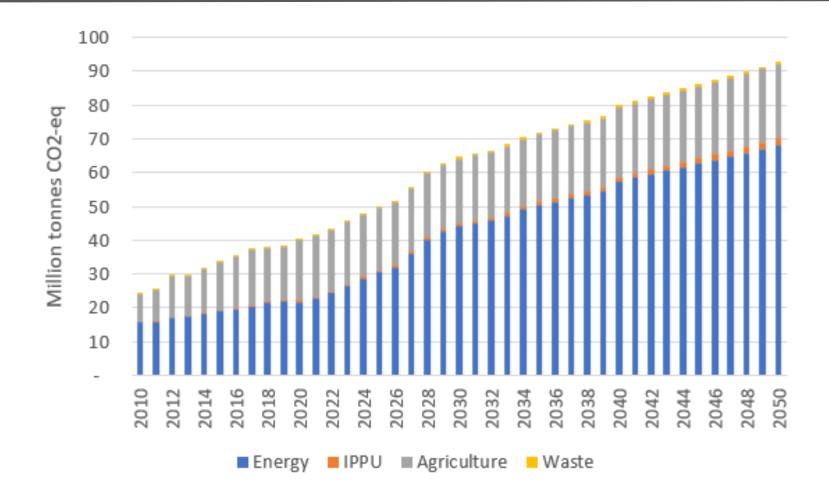
Work with developing country partner governments to achieve their Nationally Determined Contributions (NDCs)

GGGI's *more than 100 projects* contribute to the Sustainable Development Goals (SDGs)

GGGI at a **Glance**

Headquartered in Seoul, Republic of Korea, GGGI has 43 Members.

Work related to clean heating and climate change


- Long-term 2050 GHG Emissions Scenarios- in partnership with the SEI and NDC-• Partnership (2020)
- Green Energy Development Scenarios 2035 (2015) •
- Situational Analysis of Heating Sector (2017)
- Prefeasibility Studies of Green Kindergarten and Clean Heating for offgrid public school (2018)
- Energy audits to large energy users, pre-cast apartment buildings, and public buildings in major cities (2017-present)

Investment mobilization

- Mobilized 18 mln euro for Thermal Retrofitting of 1077 pre-cast apartment blocks in Ulaanbaatar from NAMA facility (2022)
- Played an instrumental role in the establishment of Mongolia Green Finance Corporation – USD 50 mln, USD 27 million from GCF and co-funding from the Government of Mongolia (2021)
- Mobilized MNT 720 mln from the State budget to pilot GSHP in Ulaanbaatar
- Recently developed with the Ministry of Energy a project concept note on • "SHIFT: Scaling-up clean Heating Investments to Facilitate energy Transformation" (Solar thermal heating)

GGGI work in Climate Change and Clean Heating

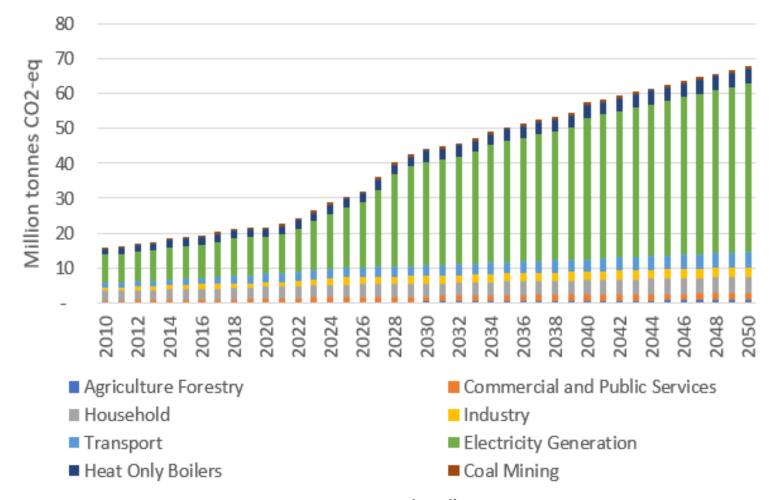
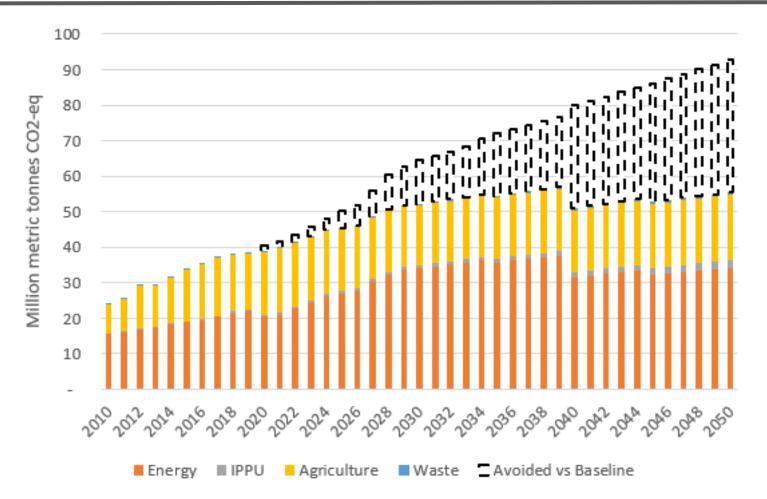



Figure 5.4: Energy-sector GHG emission projections from 2010 to 2050 for the baseline scenario (Units: million tonnes CO₂-equivalent emissions

Reduction in total GHG emissions estimated from the implementation of mitigation measures in 2030 and 2050 compared to a baseline scenario.

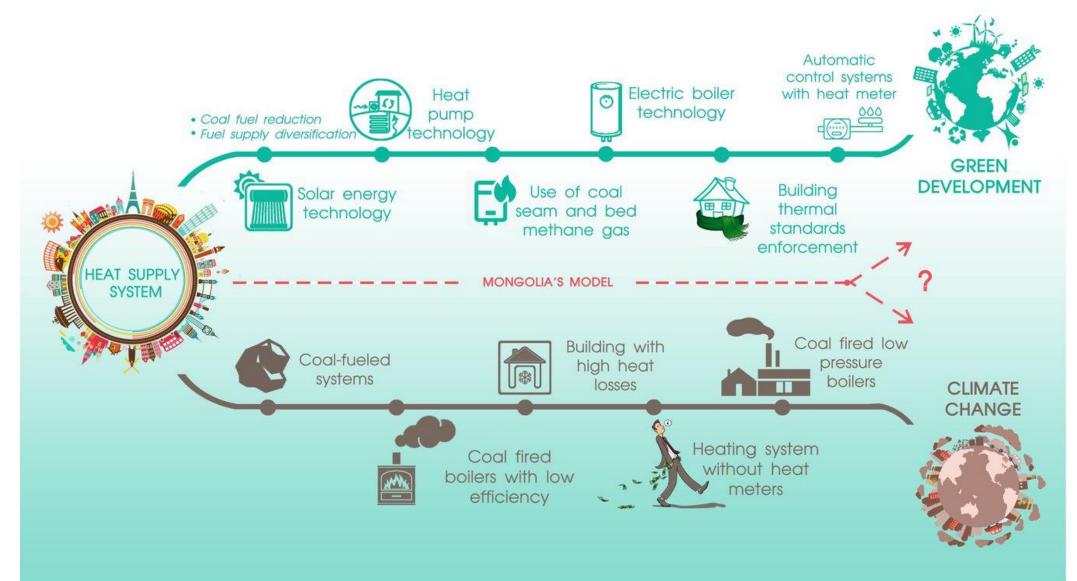
Reduction in energy sector GHG emissions estimated from the implementation of mitigation measures in 2030 and 2050 compared to a baseline scenario.

Mongolia Country context and Climate Change Commitment

Country Context – Energy Sector

- Mongolia's cold climate heating for 8 months of the year
- Rich in coal, and renewable sources wind and power
- Coal is dominant in the energy generation sector
- Complete reliance on coal based energy due to limited access to alternative technologies particularly for heat energy generation.
 - Over 90% of total electricity and 91.4% of total thermal energy are supplied by coal-fired power plants in Mongolia.
 - Almost 90% of total distributed thermal energy is used for space heating of commercial and residential buildings.

Climate Change Commitment


- NDC, baseline GHG emissions from energy production were estimated at 15,655 GgCO₂ in 2020 and are expected to increase to over 26,000 GgCO₂ by 2030.
- NDC (and its Action plan) commits to reduce GHG emissions in the energy production sector by 8,340.5 GgCO₂ (or 32%) by 2030
- Renewable energy and improvements in the energy supply system including heat supply in province (aimag) and soum centers and use of alternative technologies such as heat pumps for space heating.

Energy sector challenges:

- Growing energy demand at 7-8% p.a -Demand is projected to exceed the currently installed capacity in 2023
- Limited access to district heating and domestic hot water at provinces (aimags)
- Not financially sustainable for decades and together the impact of the covid pandemic and current geo political sistuation
- Many development partners banning investments in coal technologies
- With no additional capacity and the majority of exisitng infrastructure having reached the end of its lifespan the energy sector cannot sustain the reliability of its operations.
- Technical capacity of trained personnel

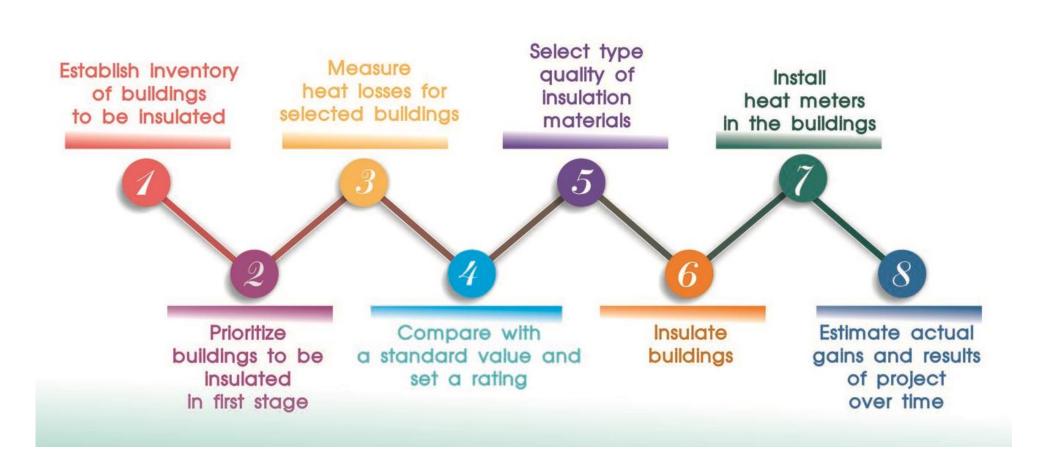
Clean/Green Heating Roadmap

Key technical conditions promote clean heating in Mongolia

- *Building Energy Efficiency (Building suitability)* Green, Passive, Energy Efficient Buildings, Designs, retrofitting to reduce building heat loss
- *Higher COP technologies* such concentrated solar, ground source heat pumps pilot, scale it up
- Alternative clean heating technologies combined with other technologies such as electric boilers, thermal storage to ensure thermal comfort and reliability in very cold winter

Clean Heating and Building Energy Efficiency

reduce heat loss of existing buildings, renovate and construct efficient new buildings


- IPCC estimated that 30% of global emissions come from urban areas and 7 out to 10 will be living in cities by 2050.
- Vision -2050, Long Term Development Policy and NDC aims to reduce building heat loss by 40% by 2030 and mainstream green building concepts across public buildings
- In Mongolia, 6 out of 10 about to live in cities by 2045 (NSO, 2017)
- Building sector of Mongolia emits around 1/3 of GHG Emissions by consuming 56% of thermal and 38% of power energy (MCUD, 2021)

Source: GIZ

Actions to reduce building heat loss of existing buildings

Pilot project #1 – Green kindergarten

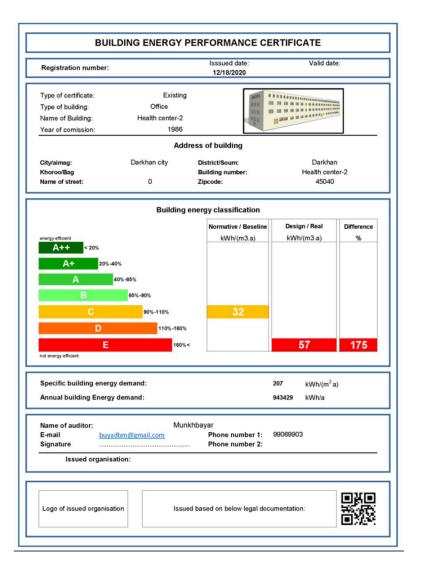
- GGGI developed the Green Building Blueprint for 125-children Public Kindergarten (2015)
- Location: Songinokhairkhan district, Ulaanbaatar city
- Emission reduction 92-120tons CO2eq/year from shifting from 68-89 tons of coal for space heating

Construction-ongoing since 2019

Green kindergarten Construction by Renderbau LLC, 10 August 2021 Source: BT LLC, 2021

Funding Source: ADB – Sustaining Access to and Quality of Education During Economic Difficulties Project <u>https://www.adb.org/projects/50091-002/main</u>

Total investment: \$697.750 Source: https://www.meds.gov.mn/?p=7941


Building energy performance

- Energy Conservation Law (2015) created enabling environment to accelerate transition to Green and Sustainable Buildings:
 - Building Energy Auditors (24) trained and certified;
 - Designated Energy Users (197) are listed, including 74 public and other buildings
- Procedure to issue Building Energy Performance was approved in 2021.

GGGI undertaken energy audits to 25 public buildings in three cities of Mongolia against BNAR 25-01-20 " Building Thermal Performance" and in line with the draft procedure of Building Energy Performance Certificate requirements.

- Energy demand of 72% (18) of the audited buildings is higher than the standard value – certified as D class buildings (not energy efficient). 72% of the building stock needs retrofitting which to increase by 2030.
- Only one building met the normative level of the new buildingconstructed in 2013.
- Buildings are constructed between 1962-1986 (except 3).

Pilot project #2 - Clean heating for off-grid public school

- GGGI developed PFS of the alternative clean heating solution to replace coal-fired boilers with ground-source heat pump in 2018
- 3500 sq.meter, EE C level, 4F building, constructed by JICA
- Government of Mongolia funding of MNT 720 mln
- Commissioned in 2019
- 120 m deep 24 boreholes of 174kW
- GHG Emission Reduction: 133 tons CO2-eq/year

Key lessons learned

Enabling Environment is important to reduce heating and cooling demand of public buildings and scale up clean heating technologies!

- Country ownership and involvement of relevant stakeholders in design and scoping phase is a key!
- Incentives and energy tariff –Measure and verify heat savings, introduce consumption based tariff (phase out flat energy tariff based on volume/area)
- Acknowledge some level of resistance and hesitance from the energy suppliers and users and build trust to alternative technologies (including technology providers) – at some aimags, *distribution network has mixed ownership* that create challenges to introduce new technologies
- **Capacity building and awareness** especially, viability, cost and benefits of clean technologies, sectoral trained personnel, especially at subnational level, policy makers and public
- Country tested electric and gas heating at off-grid schools and kindergartens, not much work around clean district heating

Moving on

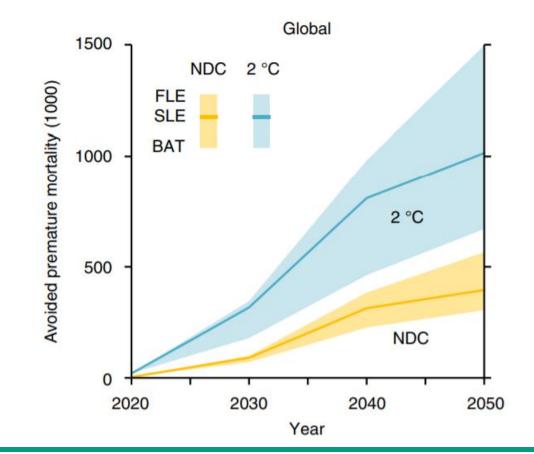
Regulatory/Structural

- Adopt long-term strategy to transition to clean heating and respective rules and regulations
- Strengthen capacity and awareness about multi-benefits of clean heating solutions
- Integrate clean heating and air pollution reduction targets in policy and planning
- Change consumer behavior and develop supply chains

Technically:

- Demonstrating the viablity of clean heating options, especially for district heating through piloting reliable technological solutions, including provinces and collect good quality data from pilot projects
- Reduce building heat loss of old buildings (suitability of buildings), and increase green, passive and energy
 efficient buildings
 - GGGI recently developed with the Ministry of Energy a project concept note on "SHIFT: Scalingup clean Heating Investments to Facilitate energy Transformation" (solar thermal heating)

Financially:


- Identify affordable financial solutions such as incentives to promote clean heating to reduce higher upfront investment costs and lower operating costs through Renewable Energy Fund etc
- Energy tariff

Wait, let us not forget about the air pollution, and climate change

Air pollutant reductions due to CO2 mitigation

Over 1 million premature deaths avoided in 2050 if Paris target is achieved

Vandyck et al. 2018

Air Pollution and Climate Change?

Black Carbon

Tropospheric

 $Ozone(O_2)$

(BC)

Nitrogen Oxides (NOx) Non-methane Volatile Organic Compounds (NMVOCs) Sulphur Dioxide (SO₂) Ammonia (NH₃) Particulate Matter (PM_{2.5}, PM₁₀) Carbon Monoxide (CO) Heavy metals Persistent Organic Pollutants (POPs) SHORT-LIVED CLIMATE POLLUTANTS

> Methane (CH₄)

> > Hydrofluorocarbons (HFCs)

Carbon Dioxide (CO₂) Nitrous Oxide (N₂O) Perfluorocarbons (PFCs) Sulphur Hexafluoride (SF₆) Nitrogen trifluoride (NF₃) Chlorofluorocarbons (CFCs) Hydrochlorofluorocarbon (HCFCs)

GREENHOUSE

GASES

Thank You

Follow our Activities on Facebook and Twitter

