IRENA

International Energy Storage Policy and Regulation Workshop

Policies and Regulations for Electricity Storage in Japan

27 March 2014

Düsseldorf, Germany

Tetsuji Tomita

New and Renewable Energy and International Cooperation Unit The Institute of Energy Economics, Japan (IEEJ)

JAPAN

Contents

- 1. Introduction
- 2. Energy Policy in Japan
- 3. Policies and Measures for Storage Battery in Japan
- 4. Regulations for Storage Battery in Japan
- 5. Demonstration Projects in Japan
- 6. Summary

Electricity Storage in Japan

- Electricity storage is important for load leveling and reliability/quality improvement
- Pumped hydro stations are practically used for grid level storage in Japan. (26 GW)
- Construction of new pumped hydro stations was estimated to become difficult due to shortage of appropriate site and environmental concerns.
- By contrast, battery could be installed at any place.

Generation Capacity(GW) by Energy Source

Focusing on battery R&D

Basic Energy Plan

- The previous **Basic Energy Plan** compiled in 2010 called for a boost in nuclear power to about half of Japan's electricity needs by 2030 from about one-third.
- After change of administration from LDP (Liberal Democratic Party) to DPJ (Democratic Party of Japan) and Great East Japan Earthquake on March 2011, energy policy in Japan have been moving to "<u>zero-nuclear</u>"..
- After change of administration from DPJ to LDP again, based on the discussion in the committee, the Japanese government made a draft of the new Basic Energy Plan on 25th February 2014.
 - A mix of nuclear, renewables and fossil fuel will be the most reliable and stable source of electricity to meet Japan's energy needs.
 - Not specified the exact mix, citing uncertain factors such as the number of reactor restarts and the pace of renewable energy development.
- Nuclear energy dependency will be reduced as much as possible, but that reactors meeting new safety standards set after the 2011 nuclear crisis should be restarted.

Priority Issues of New Energy Policy

Sector		Contents		
	Diversify electricity source	Maximize introduction of renewable energy	Deregulation	
Production			Promote wind and geothermal power, through enhancing grid, etc.	
		Restart nuclear power plants once safety is assured		
		Introduce high-efficiency thermal power plants (coal and LNG) while considering the environmental impact		
	Diversify	Procure low-cost LNG		
	fuel source	Promoting development of domestic energy sources including methane hydrate		
Distribution		Electricity market reform	 Full liberalization of generation and retail. Unbundling Nation wide transmission operation 	
		Strict assessment of power rate (Cut down fuel cost)		
Consumption		Enhance competitiveness and promote energy efficiency by installing cutting edge and efficient facilities in industries		
		Enhanced energy conservation by adding house/buildings		
		Promote efficient energy management systems such as demand response		

(Source) Ministry of Economy, Trade and Industry (METI), modified by IEEJ

Storage Battery Strategy (2012)

- The goal of the team is to formulate and implement integrated strategic policies for storage batteries, including creation of future storage battery markets, industrial competitiveness enhancement, and international standardization of relevant technologies.
- The government will also create a certification system
 - > transmission lines to facilitate linkage between them and storage batteries
 - formulating specifications and promoting international standardization for large lithium-ion batteries and other devices to ensure their safety

Target for Installing Storage Battery

- METI announced its strategy on storage batteries in July 2012.
- The strategy aims that Japanese companies acquire about half of the world's storage battery market share by 2020.
- Within this share, a little more than one third is envisaged for large scale storage batteries.

(Source) National Policy Unit, (modified by IEEJ)

Technology Roadmap for Stationary Battery

• NEDO revised RM2010 in July 2013.

	Application	Present (end of FY2012)	around 2020		around 2030	\supset
\bigcap	Long-time	Life span 10-15 years \\50,000-100,000/kWh	Life span 20 years \23,000/kWh	\geq	Life span 20 years expecting lowered	
G	nuctuating control	Demonstration	Installation Start		Commercially Installatic	on
'id	Short-time	Life span 10-15 years \200,000/kWh	Life span 20 years \85,000/kWh	\rangle	Life span 20 years expecting lowered	
		Demonstration	Start		Commercially Installati	ion
$\overline{\square}$	Middle-scale grid, factory building	Life span 10-15 years \\500,000-600,000//kWh	Life span 15 years expecti	ng low	Life span 20 years vered	
	raotory, somanig,					
	apartment	Demonstration	pread Start		Spread Period	
De	apartment Emergency, Disaster	Demonstration S Spread Start (CEMS, FEMS, B	pread Start		Spread Period	
Dema	apartment Emergency, Disaster	Demonstration S Spread Start (CEMS, FEMS, B Life span 5-10 years	pread Start EnsIntegration) Life span 15 years		Spread Period Life span 20 years	
Demand	apartment Emergency, Disaster Home	Demonstration S Spread Start (CEMS, FEMS, B Life span 5-10 years \100,000-250,000//kWh	pread Start EnsIntegration) Life span 15 years expecti	nglow	Spread Period Life span 20 years vered	
Demand S	apartment Emergency, Disaster Home	Demonstration S Spread Start (CEMS, FEMS, B Life span 5-10 years \100,000-250,000//kWh Spread Start	pread Start EnsIntegration) Life span 15 years expection	nglov	Spread Period Life span 20 years vered Spread Period	
Demand Side	apartment Emergency, Disaster Home Emergency, Disaster	Demonstration S Spread Start (CEMS, FEMS, B Life span 5-10 years \100,000-250,000//kWh Spread Start Spread Start (HEMS Integra	pread Start EmsIntegration) Life span 15 years expection	nglov	Spread Period Life span 20 years vered Spread Period	
Demand Side	Apartment Emergency, Disaster Home Emergency, Disaster Wireless base station, data	Demonstration S Spread Start (CEMS, FEMS, B Life span 5-10 years \100,000-250,000//kWh Spread Start Spread Start (HEMS Integra Life span 10 years \200,000-400,000//kWh	pread Start EMS Integration) Life span 15 years expectination) Life span 15 years expectin		Spread Period Life span 20 years vered Spread Period Life span 20 years ered	

(Source) NEDO, "Battery RM2013", modified by IEEJ

R&D Challenges for Batteries

Battery	Current Features	Challenges	Major Manufacturer	
Li-ion	200 Wh/L 80 Wh/kg 100 W/kg	cost reduction, enhanced safety, temperature character, .overcharge, recycle technology	GS Yuasa, Hitachi, Hitachi Maxell, Mitsubishi Heavy Industry, NEC, Panasonic (Sanyo), Toshiba etc.	
Lead Acid	40 Wh/L 10 Wh/kg 300 W/kg	discharge/charge efficiency, cycle degradation, corrosion, maintenance	GS Yuasa, Shin-kobe Electric Machinery etc.	
NiMH	84 Wh/L 20 Wh/kg 100 W/kg	cost reduction, discharge/charge efficiency, energy efficiency, temperature character, rare earth	Kawasaki Heavy Industry FDK(Fujitsu) Panasonic (Sanyo) etc.	
NAS	160 Wh/L	enhanced safety, cost reduction, energy efficiency, recycle technology	NGK Insulators	
Redox Flow	8.5 Wh/L	environmental acceptability, cost reduction, durability, energy density, resource restriction	Sumitomo Electric	
Common Challenges	cost reduction of power conditioner (inverter), long time backup (more than 24hours). V2H/V2G, secondary use, recycle, residual performance, standardization, etc.			

Major Subsidy Programs in 2012-2013

Governing Agency	Program Name	Maximum Subsidy	Note	
	Stationary Li-ion battery	1/3	Total 21bn JPY	
	Large-scale battery	plan	-	
	Stand alone renewable energy generation (with batteries)	1/2	less than 30m JPY	
METI	Smart Energy System	1/3 (SMEs:1/2)	Earthquake affected area	
	Smart Community	2/3		
	Renewable energy generation (with batteries)	1/3		
MOE	Storage battery for renewable energy generation	1/2	>1MW	
	Renewable energy in local area	1/2	Total 1bn JPY	

• METI: Ministry of Economy, Trade and Industry

MOE: Ministry of Environment

(Source) Several materials, (modified by IEEJ)

Regulations for Electricity Storage

- In case of installation, applications and permissions are required.
- Some procedures have been simplified or removed for promoting batteries. (Deregulation)

Туре	F	Governing Organization		
Guideline (Technical	Technical requirements gu secure electricity quality (2004, revised in 2013)	Ministry of Economy, Trade and Industry (METI)		
Requirement)	Grid Interconnection Code (superseded by JEAC 970	Japan Electric Association (JEA)		
Low	Electricity Business Act	Required approval for large electricity storage system more than 80,000kWh	Ministry of Economy, Trade and Industry (METI)	
	Fire Service Act	Dangerous material for more than 1,000l organic electrolyte solution	Fire and Disaster Management Agency,	
	Fire Prevention Ordinance	Required approval for large battery (4,800Ah/cell)	Ministry of Internal Affairs and Communications	
	Building Standards ActConstruction application for building regarding to fire prevention property		Ministry of Land, Infrastructure, Transport and Tourism	

Wakkanai Mega Solar Project

5MW Solar with 1.5MW NAS Battery

(Source) NGK Insulators, Ltd.

Miyakojima Remote Island Microgrids

(Source) NGK Insulators, Ltd.

Large-scale Battery Energy Storage System

Tohoku Electric Power Co., Inc.

Conceptual drawing

Overview of battery system (Toshiba)

Subsidized Company	Battery type	System Capacity	Location
Tohoku Electric Power Co., Inc.	Lithium ion Battery	20 MWh	Substation in Tohoku

JAPAN

Cell stack

Electrolyte Tank

Multi-purpose Grid Storage Project

Overview of battery system (Sumitomo Electric Industries)

Conceptual drawing

Subsidized Company	Battery type	System Capacity	Location
Hokkaido Electric Power Co., Inc. Sumitomo Electric Industries Ltd	Redox Flow battery	60 MWh	Substation in Hokkaido

Summary

- Government of Japan is now redesigning Energy Policy after the Great East Japan Earthquake.
- Storage Battery is a core technology under the current tight electricity supply and demand situation.
 - promoting electric-load leveling for both the supply and demand sides
 - promoting distributed power sources system like smart-grid society
- Storage battery industry is expected to be a growth sector with a potential for market expansion.
- To develop this potential growth sector into a strategic industry, the government will accelerate sophistication, cost reduction and widespread use of storage batteries.
 - Subsidies for installations and demonstration projects (large-scale)
 - Grants for R&D
- Regulations are also being relaxed for expanding markets for batteries.

Reference

Trend of Power Generation In Japan

⁽Source) Federation of Electric Power Companies of Japan

Current Status of Renewable Energy in Japan

- Renewable energy accounted for approximately 10% of power generation in Japan before the March 11, 2011, Great East Japan Earthquake.
- More specifically, hydroelectric power generated by large-scale dams, etc., accounted for 9.0%, with solar PV, wind, geothermal and biomass power accounting for over 1%.

⁽Source) Federation of Electric Power Companies of Japan

Proportion of Renewable Energy in Japan

(Source) Ministry of Economy, Trade and Industry