

REmap 2030 and the Role of Storage

Dolf Gielen Director Innovation and Technology Centre International Renewable Energy Agency

Energy Storage Workshop, 27 March 2014

IRENA country membership is rapidly growing: 130 Members, 37 States in Accession

Established international cooperation framework for acceleration of RE deployment since 2011

Content

- 1. REmap 2030
- 2. The Role of Storage
- 3. IRENA Electricity Storage roadmap

About half of the new electricity generation capacity worldwide is ^{70%} based on renewable energy, largely of the variable type *The share has doubled in recent years*

Grid integration of variable renewables – storage is part of a package

- Electricity supply must meet demand
 - Short term issues: frequency and voltage control (ST)
 - Long term issue: bulk storage (LT)
- Smart grids (information technology meets electricity grids)
- Supply side options
 - Regional spread (incl interconnectors) (ST/LT)
 - Diversify renewables resources (ST/LT)
 - Storage (ST/LT)
 - Backup capacity (eg gas turbines, NGCC, diesel engines) (ST/LT)
 - Export/import electricity (ST/LT)
 - Curtailment (ST)
 - Better forecasting (ST)
 - Enhance flexibility of fossil/nuclear plant (ST)
- Demand side management
 - Load shedding
 - Produce hydrogen, synthetic gas
 - Electric vehicles for storage, heatpumps etc

REmap 2030

REmap 2030 A Renewable Energy Roadmap

Summary of findings

lanuary 2014

Pathways for a doubling of the global RE share *IRENA is RE hub for SE4ALL: translate REmap into action*Technology options to meet the objective
Opportunities for international cooperation to realize this vision

82 experts from 42 countries, 10 workshops, 3 webinars

REmap is an exploratory study, not a target setting exercise

Technology options instead of scenarios

- Based on national plans and scientific literature
- Characterized by their cost and potentials

7

REmap 2030 coverage

26 countries representing **75% of global energy demand** in 2030 Country results are aggregated and extrapolated to global findings

Contribution to raising global modern RE share: from 14% in Reference Case to 36% in REmap 2030

Governments underestimate growth of renewables

Shares of VRE in 2030

Maximum penetration of vRE

Electric vehicles & storage Two options: used batteries or cars as storage option

Total storage capacity with used electric vehicle batteries (GW)

25 million electric/PHEV vehicles in 2020, 160 million in 2030

Importance of grids for investments IRENA 40% of power sector investment International Renewable Energy Agency needs Total power sector investment needs up to 2035 (17 trln dollars) Source: IEA WEO 2013 IEA estimates 5% of T&D cost for RE integration NON-**OECD** T&D **GENERATION** OECD

non-oecd expansionoecd expansion

non-oecd replacement
 oecd replacement

Types of storage technologies

- Large scale electricity storage
 - Pumped hydro 150 GW
 - Compressed air electricity storage <0.5 GW
- Small scale electricity storage
 - Batteries <0.5 GW (NAS, Li-ion, lead-acid etc)
 - Redox flow batteries <0.1 GW
- Thermal storage (CSP<1 GW); cold storage (ice)
- Chemical products
 - Hydrogen and derivatives (eg power to gas) not practiced today but technically feasible
- Fly wheels, capacitors for frequency control, not for bulk storage
- High storage efficiency is important for cost-effective storage
- Cost per kWh is inversely proportional with number of storage cycles
 - Seasonal battery storage makes no economic sense

IRENA grids & storage studies to date

- 1. Technology brief on electricity storage
 - Pumped hydro dominant with 95% of storage capacity
 (150 GW compared to 5500 GW power generation cap)
 - New battery developments promising, but high cost
- 2. Storage for Islands: Guide for Decision Makers
 - Storage can increase efficiency of diesel generators even in absence of renewable
 - System integration is key factor
 - Transport costs of equipment, maintenance and operation can be complex
- 3. Smart grids and renewables
 - Important new technology solutions are emerging
 - Distributed storage is one of them
 - Complementary policies and regulations needed
 - Standards and grid codes
 - Set rules for ownership/control of distributed storage
- Grid stability studies

2nd International Off-grid Renewable Energy Conference and Exhibition (IOREC)

16-17 June 2014, Manila, Philippines

A biannual event on scaling up rural electrification through off-grid RE (mini-grids and stand-alone). The event is co-organised by IRENA, Asian Development Bank and Alliance for Rural Electrification.

The conference marks the beginning of the Asia Clean Energy Forum 2014.

IOREC 2012

- 350+ participants from more than 80 countries
- Representatives from 30 Rural Electrification Agencies and Ministries in charge of RE
- Speakers from 23 Countries

Objectives

- Global platform to share experiences, lessons learned and best practices
- Discuss key barriers for stand-alone and mini-grid RE system deployment
- Connect stakeholders across
 the off-grid RE value chain

Topics to be covered

- Policy frameworks for offgrid RE scale-up
- Financing and business models for off-grid RE
- Technology innovation, including storage

Electricity storage battery projects

Data: DOE Global Energy Storage Database ¹⁹

Storage Economics

- Electricity prices do NOT reflect marginal cost in most markets for most consumers
 - This affects the storage business case for PV
- Variable renewables can affect the peak pricing
 - It is not possible to operate new pumped hydro competitively in Germany because of variable renewables
 - Pricing/market reform is a top priority
- Economics depend on the future of the system design (centralised/decentralized/demand development/peak reduction)
- Battery storage make economic sense where consumer prices are high
 - High taxes and levies (eg Germany)
 - High grid cost due to low demand density (eg South Australia)
 - High production cost due to diesel generators (islands, rural Africa etc)
- Battery systems 300-500 USD/kW used daily make economic sense
- Systems much more expensive than battery packs alone
- Distributed batteries can save on distribution cost

IRENA ELECTRICITY STORAGE ROADMAP

Electricity Storage roadmap (1) Largely technology oriented

) COR IRENA International Renewable Energy Agency

Organisation	Focus	Output
IEA	Global	Recommendations for action; IC
EASE/EERA	EU	RD&D priorities
NEDO	Japan	Performance indicators
ADEME	France	R&D priorities, barriers
CFLCF	UK	R&D priorities, barriers
NAATBatt	US	Survey
NY_BEST	New York	Policy proposals
Fraunhofer ISI	Electric Mobility	Performance indicators, R&D
U.S. DRIVE	Electric Mobility	Performance indicators, capacity
RECHARGE	Electric Mobility	Policy proposals

IRENA Technology Roadmaps Market & policy oriented

- **Aim:** Identify *key areas for international cooperation* to support the integration of variable renewables and the transition of the power infrastructures
- Objectives:
 - Address key techno-economic questions by policy makers
 - Explain relationship between policy and technology deployment
 - Provide platform for interaction between multiple stakeholders
 - Allow for prioritization of activities
- Methodology:
 - Literature Review: Bringing together existing roadmaps and studies from different countries
 - Stakeholder workshops: Understanding the needs from policy makers and other stakeholders

- What electricity storage markets and applications will be most relevant for the deployment of renewables?
- Which **technology developments** in storage are needed to facilitate renewable energy grid integration?
- What will be the **key drivers for commercialization** of electricity storage technologies for renewables deployment?
- Which **policies and regulations** for electricity storage are needed to support the accelerated deployment of renewables?
- Based on the answer above, what are the three key areas where IRENA members can support the electricity storage for renewables through international cooperation activities?

THANK YOU !

WWW.IRENA.ORG