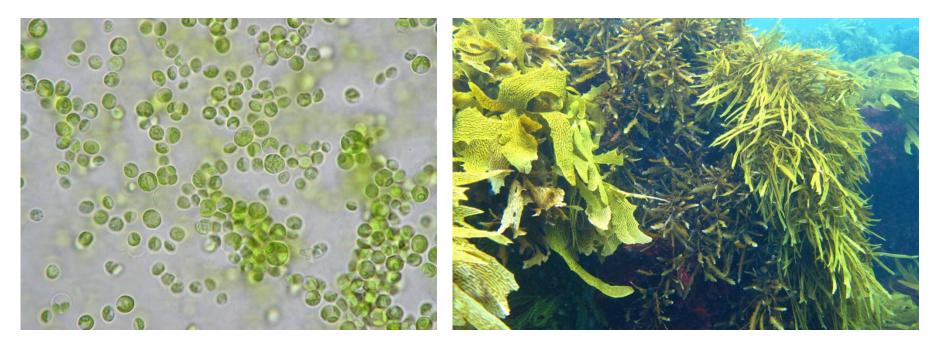
Algae for biofuels for road transportation

Prof A.G. Charalambides Sustainable Energy Laboratory Cyprus University of Technology

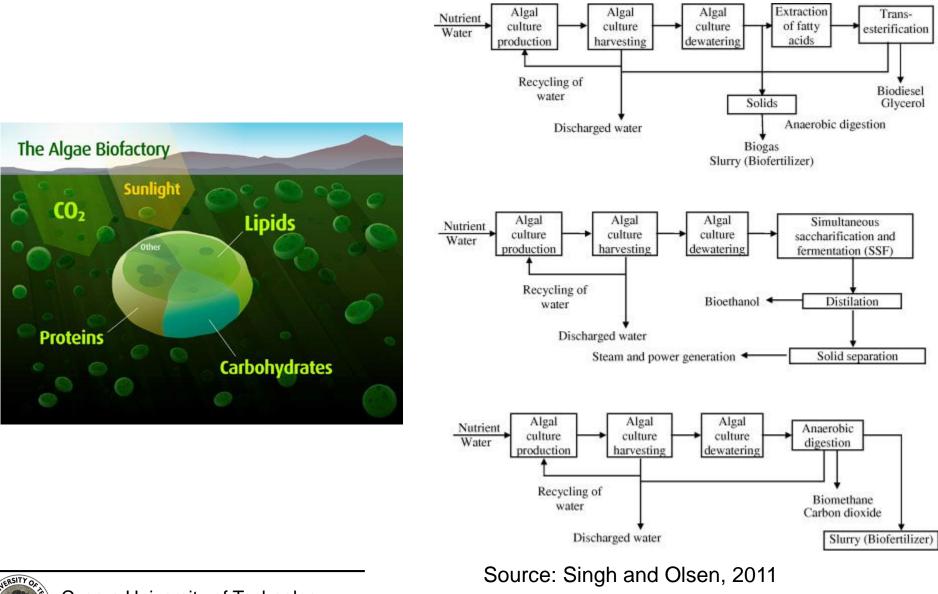
IRENA Cyprus Event on Renewable Energy Applications for Island Tourism

29-30 May 2014, Cyprus

Presentation Overview


- Introduction
 - Micro- and Macro- algae
 - Cultivation
 - Why algae?
 - Emissions
 - Other benefits?
- Transport and Tourism
- Algae work in Cyprus
 - Microalgae
 - Gracilariopsis longissima and Cladophora sp.

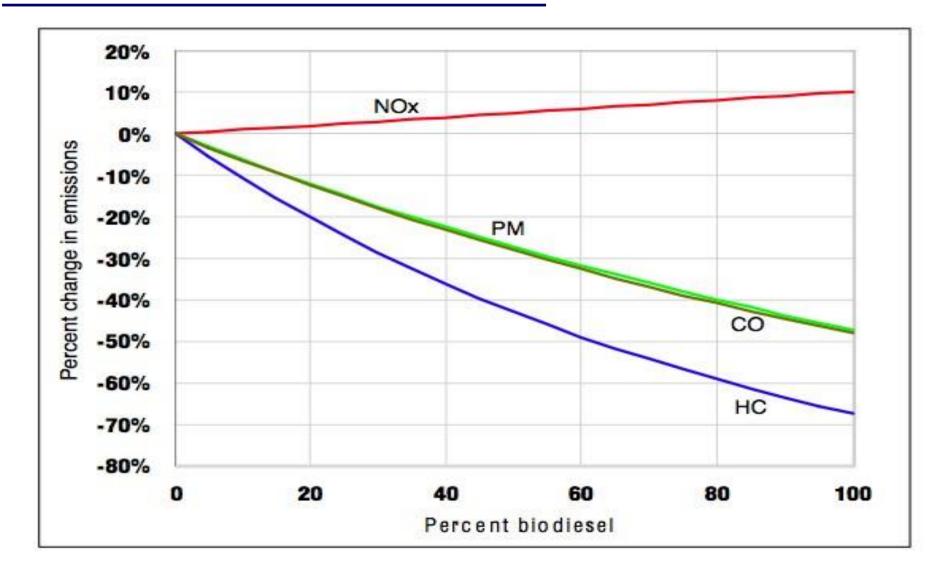
Conclusions


Introduction – Microalgae and Macroalgae

- **Microalgae** covers all unicellular and simple multi-cellular microorganisms, including both prokaryotic and eukaryotic microalgae and diatoms, while
- Macroalgae (seeweed) are large-celled, photosynthetic algae (red, brown and green algae)

Cultivation - Introduction

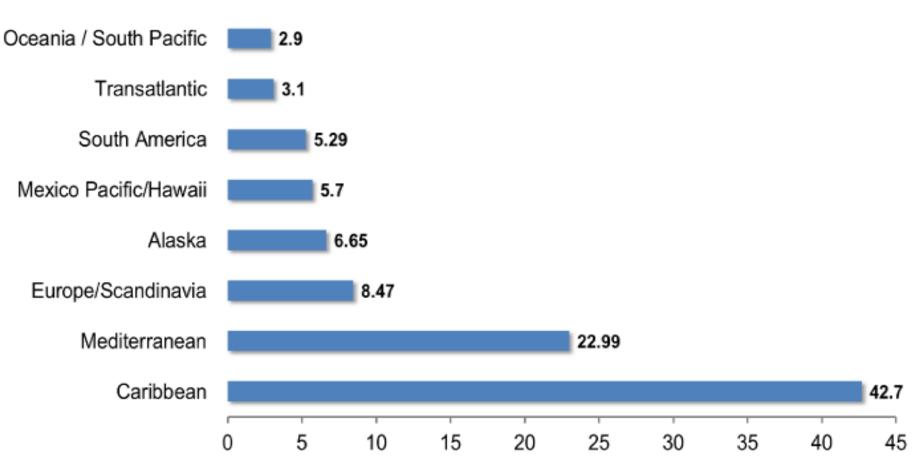
Cultivation – Open ponds/ Bioreactors



Cultivation – Advantages

- Advantages:
 - (1) All year round production,
 - (2) Can grow in aqueous media, but need less water than terrestrial
 - (3) Can be cultivated in non-arable land,
 - (4) Can utilize nutrients such as nitrogen and phosphorous from a variety of waste water sources.
 - (5) Have a **rapid growth potential** (30 times) & many species have high oil content
 - (6) Can also **produce valuable co-products** such as proteins and residual biomass
 - (7) Can tolerate and utilize substantially higher levels of CO_2 than terrestrial plants hence they can utilize CO_2 emitted from petroleum-based power stations
 - (8) Can be **converted into different fuel forms**, such as biogas, liquid and gaseous transportation fuel, kerosene, ethanol, aviation fuel, and biohydrogen.
- But, it takes considerable energy to produce algal biofuels with current technology

LCA and Emissions of Algal Biofuels


Other benefits?

- EU has placed strict restrictions for the quality of the effluents that can be disposed from agricultural waste streams.
- To comply with the 96/61/EC and 2000/60/EE Directives, industries have to install means of wastewater treatment to remove excess nutrients and organic load.
- Worldwide studies showed that algae in general can act as a biofilter
 - <u>Removal of heavy metals</u> (Schiewer, 1997; Apiratikul et al., 2008)
 - <u>Removal of nutrients</u> (Oswald et al., 1957; Tsagkamilis et al., 2009)
 - <u>Macroalgae as aquaculture waste biofilters</u> (Ryther et al., 1975; Chow et al., 2001)
 - Macroalgae vs microalgae (Oswald, 1963; de-Bashan et al., 2004)

Transport and Tourism

Capacity in million bed-days

Source: Cruise Lines International Association

Work in Cyprus – Microalgae I

Overall objectives of the project:

 to investigate, assess, and establish a mechanism to enhance production of biofuels and by-products from microalgae supporting the efforts to tackle climate change - and to enhance local and regional development in the Mediterranean Area.

Project data

- ENPI CBCMED
- Starting date: 7 December 2011
- Budget: 2.000.858,54 Euro
- JMA and JTS, Cagliari, Italy
- Agricultural Research Institute, ARI (PM)

Production of Biodiesel from Algae in Selected Mediterranean Countries (MED-ALGAE)

Work in Cyprus – Microalgae II

Cyprus University of Technology Alexandros Charalambides

11/15

Work in Cyprus – Macroalgae I

Overall objectives of the project:

to develop a suitable methodology for the swine's waste water treatment using macroalgae and the use of the excess Macroalgae biomass to produce biofuels such as biodiesel and bioethanol.

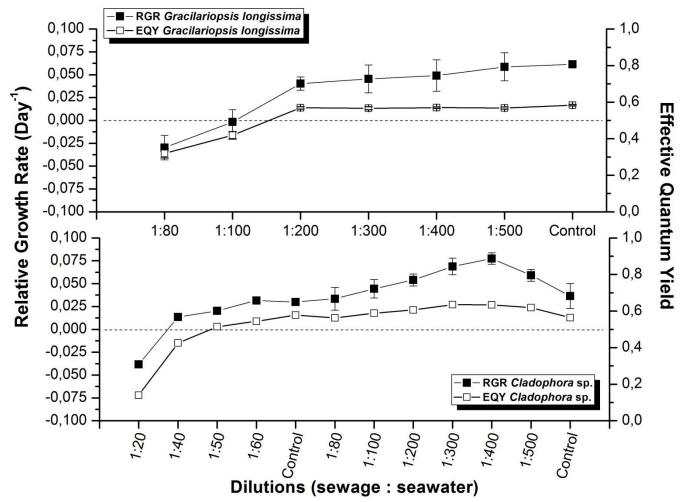
Project data

- **ΠΕΝΕΚ/0311/21**
- Starting date: 1 June 2012
- Budget: 87.500 Euro
- Cyprus University of Technology

Gracilariopsis longissima (Rhodophyceae)

Cladophora sp. (Chlorophyceae)

Cyprus University of Technology Alexandros Charalambides



ΚΥΠΡΙΑΚΗ ΔΗΜΟΚΡΑΤΙΑ

Work in Cyprus – Macroalgae II

Comparison of the of EQY and RGR for the different dilutions (sewage: seawater) on *G. longissima and on Cladophora sp, within* a cultivation period of 9 days.

Cyprus University of Technology Alexandros Charalambides

ΚΥΠΡΙΑΚΗ ΔΗΜΟΚΡΑΤΙΑ

Algae can be used for the production of biofuels, ...

... but more work is still needed.

Thank you

For more information contact:

Prof. Alexandros Charalambides

Assistant Professor

Sustainable Energy Laboratory

Department of Environmental Science and Technology

Cyprus University of Technology

Email: <u>a.charalambides@cut.ac.cy</u>

