





# Session 2a: Solar power spatial planning techniques

IRENA Global Atlas Spatial planning techniques 2-day seminar

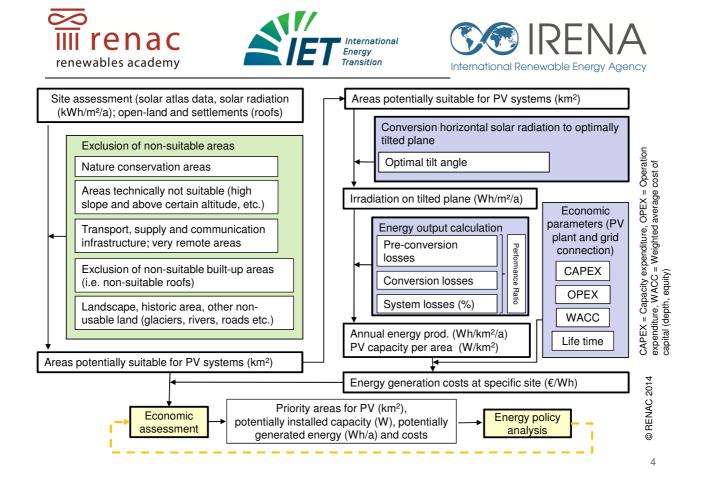






### Central questions we want to answer

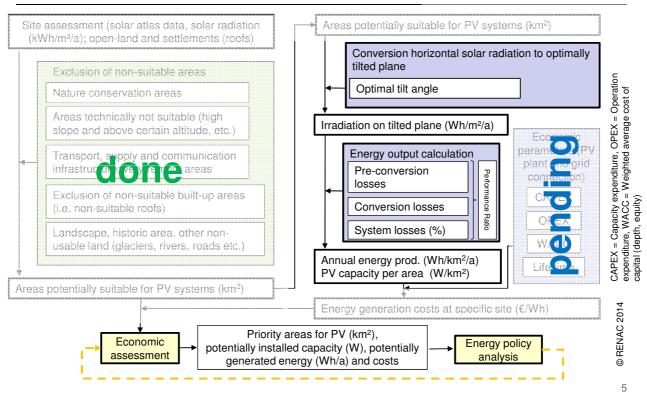
- After having identified those areas which are potentially available for renewables, we want to estimate...
  - what the potential solar **PV capacity** per km<sup>2</sup> and in total is (W/km<sup>2</sup>), and,
  - how much electricity (Wh/km²/a) can be generated in areas with different solar resource availability.
- We also need to know which parameters are the **most sensitive** ones in order to identify the most important input parameters.
- In this section, we will focus on grid-tied PV but also provide useful numbers for CSP.








# Contents


- 1. Overview on PV output estimation
- 2. Solar resource
- 3. Spatial setup of large-scale PV plants
- 4. Estimating PV electricity yield
- 5. Worked example: Estimating PV capacity and yield at a given site
- 6. Peculiarities in off-grid applications
- 7. A few words on CSP

















# 1. OVERVIEW ON PV OUTPUT ESTIMATION

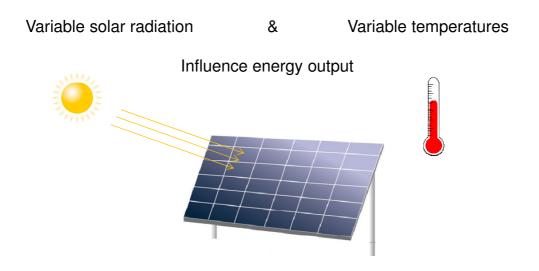






# Spatial design

 In PV plants where we are applying a tilt angle on modules we have to optimise space between module rows minimising self-shading losses



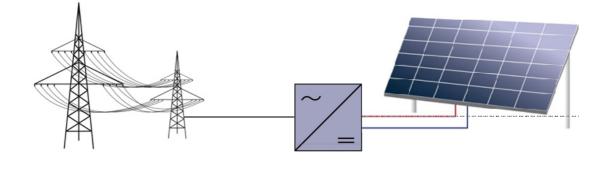







# Influence of radiation and temperature










### **Electrical system losses**

# Ohmic losses in cabling and electronic components (e.g. inverters) also reduce output





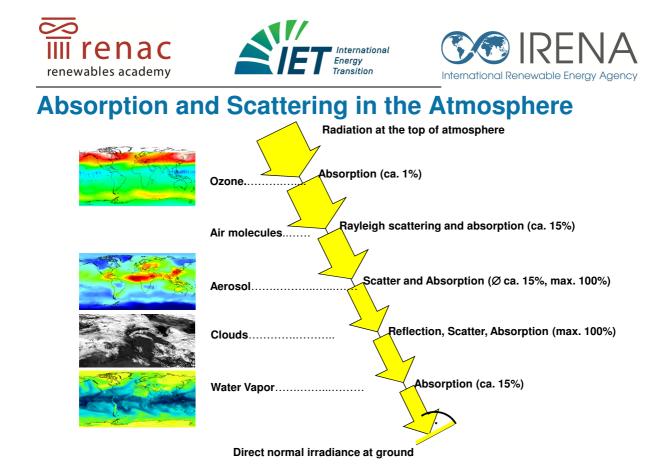




# 2. SOLAR RESOURCE





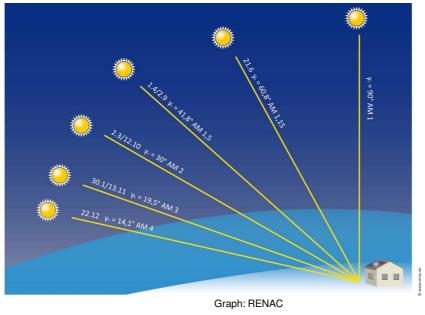




### **Solar radiation variation**

 The sun's power density when its rays reach the earth's atmosphere is known as the solar constant and equals 1366 ±7 W/m<sup>2</sup>



Graph: RENAC










Irradiance reduction through atmosphere Air Mass (AM)



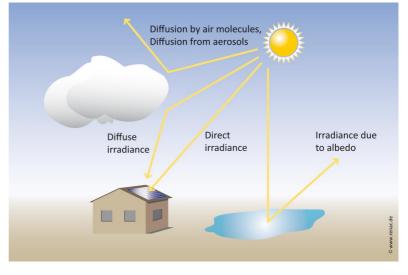






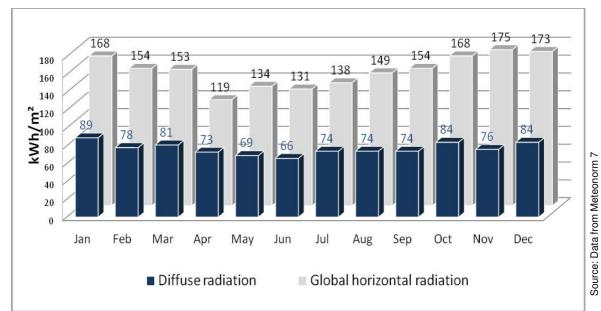
### Beware of the trap: solar irradiance vs. irradiation

- Solar irradiance
  - Instantaneous power of sunlight on a defined surface; e.g. in W/m<sup>2</sup>
- Solar irradiation
  - Solar energy received during a specified time period on a defined surface;
    e.g. in kWh/(m<sup>2\*</sup>day) or MJ/(m<sup>2\*</sup>year)









# Three component radiation model

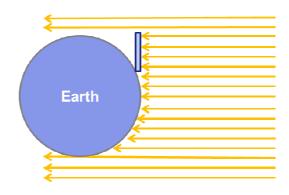
- Global radiation is composed of
  - direct radiation (coming directly from sun, casting shadows)
  - diffuse radiation (scattered, without clear direction), and,
  - reflected radiation (albedo).





# Solar radiation – Dar Es Salaam, TZ










# Global horizontal irradiation and irradiation on the tilted plane

- Irradiation data is usually provided as global horizontal irradiation (GHI)
- If moving away from the equator, more irradiation can be received by tilting solar modules
- Rules of thumb:
  - Tilt angle against the horizontal = Latitude of the PV installation site\*
  - 2. Minimum angle of 10°...15° to avoid settlement of dust and dirt.



 \*In regions with latitudes >30° the tilt angle is usually between 5° and 20° less than the latitude. The greater the latitude the higher the subtracted value.







# **3. SPATIAL SETUP OF LARGE-SCALE PV PLANTS**



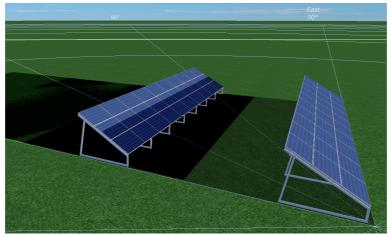




### How much power (MWp) can we fit in one km<sup>2</sup>...



Source: Albrecht Tiedemann








### ...and limit excessive shading?

- Self-shading occurs when the rows of PV modules in arrays partially shade the PV modules in the rows behind.
- The only unaffected row is the one in the front.



Source: RENAC (Simulation made using PV\*SOL premium 7.0)

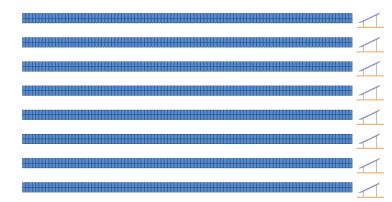






### Which space between rows is needed?



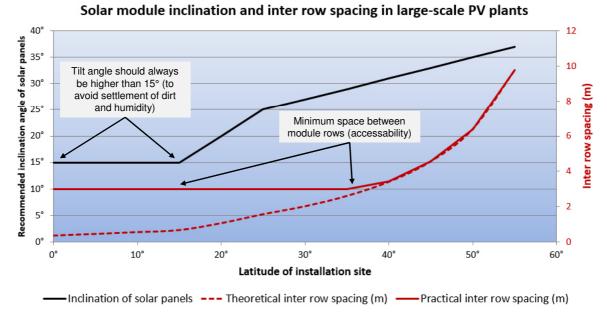







# Which space between rows is needed?

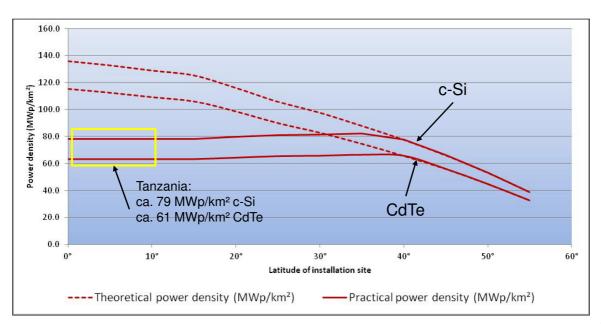
- Space between rows depends on:
  - Latitude (sun path)
  - Inclination of solar panels
  - Setup of solar panels on mounting structure
  - Minimum space needed for O&M (car/small truck should fit through)











### Solar panel inclination and inter-row spacing



23



# Power density of large-scale PV plants









# 4. ESTIMATING PV ELECTRICITY YIELD

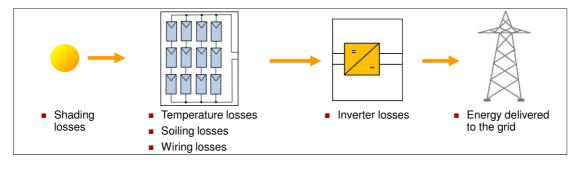






# Photovoltaic electricity yield

- Our input is the solar radiation received, the solar resource
- We are using a technical system i.e. the PV system to convert light to useful electricity;
- Any technical system has physical limitations (module efficiency) and will create losses
- Our useful electricity is alternating current (in the case of grid-tied systems)








# Yield of a solar PV system

- The fundamental question to answer is how well the system performs and how much electricity does the solar PV system deliver to the grid
- Energy losses occur at every step of the conversion between solar energy and AC electricity fed into the grid
  - Pre-PV generator losses
  - PV generator losses (module and thermal losses)
  - System losses
- The task of the design engineers is to optimize the plant maximizing energy yield by reducing losses









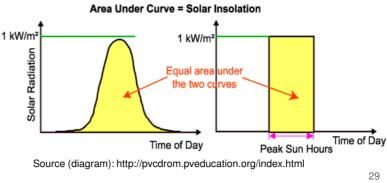
# **Reasons for losses (simplified)**

- Losses before module (Pre-conversion losses)
  - Module tolerance
  - Shadows
  - Dirt 5 % more than 20% in arid regions with little rain (maintenance dependent)
- Module losses due to deviation from standard conditions and temperaturerelated losses
- System Losses (~10-15%)
  - Wiring
  - Inverter
  - Transformer (if applicable)
- O&M downtimes
- Losses are added up and result in the so-called Performance Ratio (in %); PR is improving with technological development, currently: 75 - 85%








# Performance ratio as a measure of the quality of a PV plant

- The performance ratio PR defines the overall solar PV plant performance
- It is calculated as the relation between the energy yield that has actually been generated

$$(Y_{\text{real}})$$
 and the theoretical energy yield  $(Y_{\text{ideal}})$ 

 $PR = Y_{real} / Y_{ideal}$ 

- How to calculate the ideal yield Y<sub>ideal</sub>?
  - Remember the peak-sun hour method!









# Estimating PV plant electricity yield using expected Performance Ratios

- Note: Only for rough estimations!
- Electricity yield of a PV system:

 $E = h \cdot n_{pre} \cdot n_{rel} \cdot n_{sys} \cdot P_{nom} = h \cdot PR \cdot P_{nom}$   $h \quad \text{Peak Sun Hours}$   $n_{pre} \quad \text{Pre-conversion efficiency}$   $n_{sys} \quad \text{System efficiency}$   $n_{rel} \quad \text{Relative efficiency}$   $P_{nom} \quad \text{Nominal power at STC}$ 

• '*h*' is Peak Sun Hours, unit: hrs (do not confuse with sunshine hours!)

Peak Sun Hours = Annual irradiation in [kWh/m<sup>2\*</sup>a] / 1000 W / m<sup>2</sup>







# What is the capacity factor?

- The capacity factor of a PV plant is the ratio of its actual output over a period of time, to its potential hypothetical output if it were possible for it to operate at full nameplate capacity forever.
- Example:
  - PV plant: 1 MWp
  - Potential hypothetical output = 1 MWp x 8,760 h = 8,760 MWh
  - Actual output: 1,600 MWh/MWp
  - Capacity factor: 1,600 MWh/8,760 MWh = 18.3%
- Not to be confused with the capacity credit!







Worked example:

# 5. ESTIMATING PV CAPACITY AND YIELD AT A GIVEN SITE



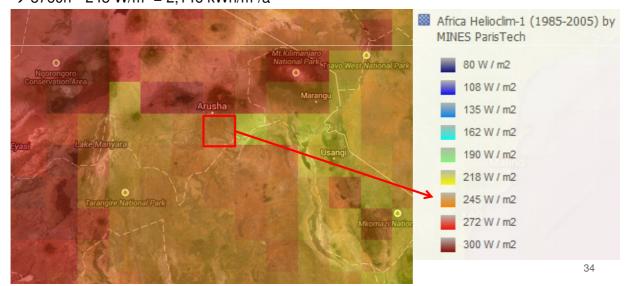




# PV energy yield estimation near Arusha

- Steps performed:
  - 1) Retrieve global horizontal irradiation data from Global Atlas
  - Estimate specific electricity yield (kWh/kWp)
  - Estimate PV capacity and potential wind energy per km<sup>2</sup> at given location










# **Retrieving global horizontal irradiation**

 Daily average global horizontal irradiance of 245 W/m<sup>2</sup> → 8760h \* 245 W/m<sup>2</sup> = 2,146 kWh/m<sup>2</sup>/a









# Adjusting horizontal irradiation to irradiation on tilted plane

- Arusha is very close to the equator (latitude: 3°S); the theoretical optimum tilt angle is very close to 0° at this location. Since PV modules should never be placed flat, we choose a tilt angle of 15° in order to avoid too strong settlement of dust.
- Tilting the module 'away' from its optimum means that we have to adjust irradiation on the tilted plane.
- Online tools like PVGIS (<u>http://re.jrc.ec.europa.eu/pvgis/</u>) or professional database meteonorm produce 3% less irradiance per year on the tilted module plane (15°):

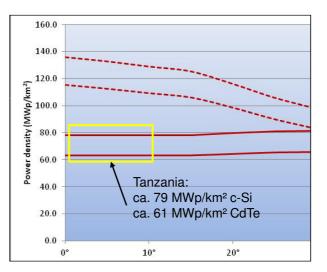
2146 kWh/m<sup>2</sup>/a global horizontal irradiation  $-3\% = 2082 \text{ kWh/m}^2/a$  (tilted module plane)

• Note: In locations which are located further away from the equator (approximately between 5°N and 5°S), tilting the modules to 15° or a higher optimal angle will produce solar irradiation gains.



# Estimating the specific PV electricity yield

- Assumptions\*:
  - Free-standing arrays
  - PR of c-Si modules = 75%
  - PR of CdTe modules = 78% (mainly due to lower temperature sensitivity)
- Annual Peak Sun Hours = (2,082 kWh/m<sup>2</sup>/a) / (1,000 W/m<sup>2</sup>) = 2,082 h/a
- Electricity yield estimation:
  - c-Si: 1kWp \* 75% \* 2,082 h/a = 1,562 kWh/kWp/a
  - CdTe: 1kWp \* 78% \* 2,082 h/a = 1,624 kWh/kWp/a





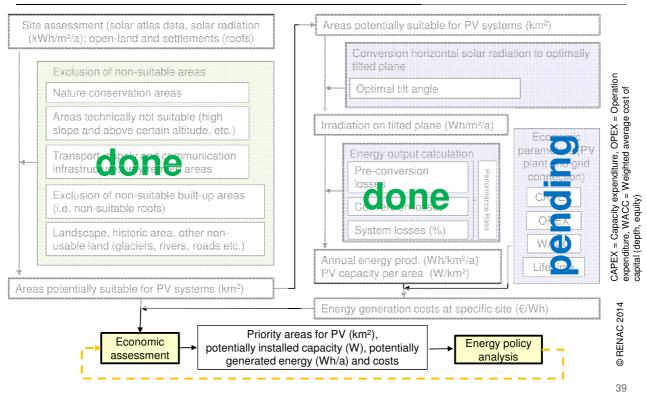



# Estimating energy per km<sup>2</sup> and capacity factor

- c-Si:
  - 79 MWp/km<sup>2</sup> \* 1,562 MWh/MWp/a
    = 123 GWh/km<sup>2</sup>/a
- CdTe:
  - 61 MWp/km<sup>2</sup> \* 1,624 MWh/MWp/a
    99 GWh/km<sup>2</sup>/a
- Capacity factor: 1,562 MWh / 1 MWp
  = 1,562 h → 1,562 h / 8760 h = 17.8%






### **Please remember**

- The previous worked example is only a rough estimate and results are only true for the given assumptions (open-land installation, module types, solar resource data, Performance Ratio assumptions, etc.)
- Factors which might influence electricity output, which have not been considered in detail here are for instance: heavy soiling of modules, shading from other objects, additional temperature losses if ventilation is lower than in the case of free-standing arrays (e.g. roof-parallel installation), etc.















# 6. PECULIARITIES IN OFF-GRID APPLICATIONS





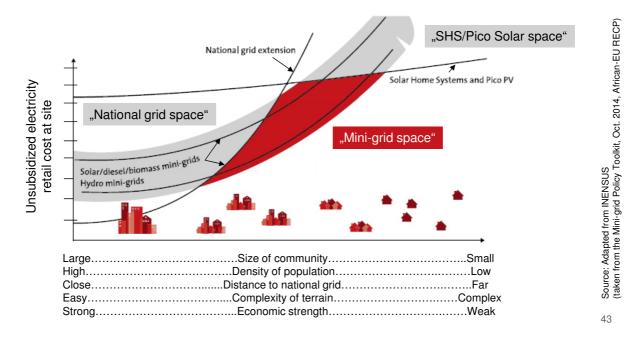


# Off-grid solutions will play an important role.

- In view of low electrification rates, economic and population growth, and large geographic areas with dispersed population, IEA has estimated that 60% of the additional generation capacity to be installed by 2030 will be off-grid.
- Technical solutions:
  - Small off-grid: Individual Solar Home Systems / Pico Systems
  - Mini-grids: A mini-grid is a power system where produced electricity is fed into a small distribution network that provides a number of end-users with electricity in their premises. Mini-grids are typically less than 1 MW in capacity and utilize diesel, renewable (+storage) or hybrid (combined) fuel sources to produce electricity.

Source: Mini-grid Policy Toolkit, October 2014, African-EU RECP

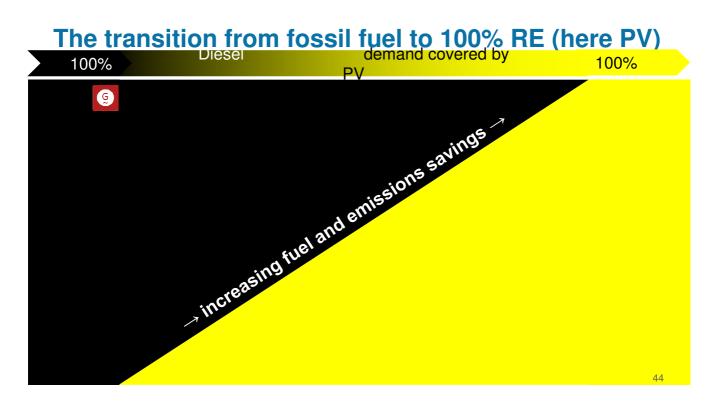










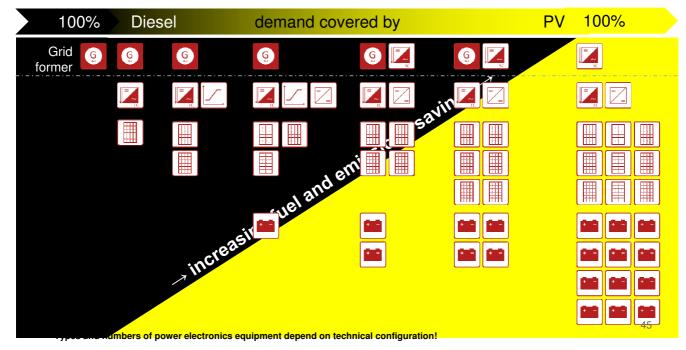


Where can off-grid solutions play a role?









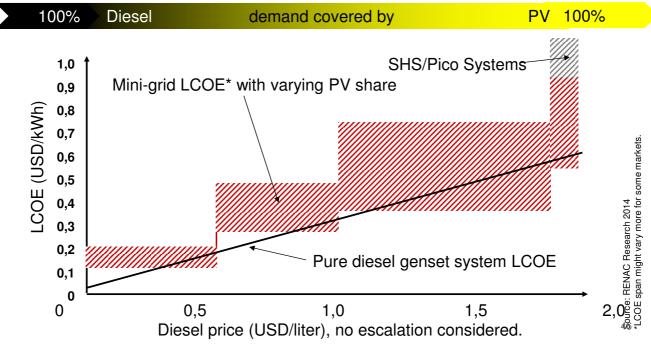









# **Complexity increases.**










# LCOE increases.









**Know your CAPEX leverage!** 









# The biggest challenge in rural electrification is..

- ...NOT the technology (if you have achieved certain quality standards) but the management and operation of the system!
- Involve the community.
- Know and manage the risks and be honest in your judgement.
- Be prepared to be on your own!
- Implement clear processes with clear responsibilities assigned to real persons/teams/companies.
- Manage accounts thoroughly.
- Avoid conflicts of interests.
- Avoid staff fluctuation.

Solar panels damaged by members from a neighboring community. "They weren't electrified, too!"

Picture: Lars Koerner









# What happens if the national grid arrives?

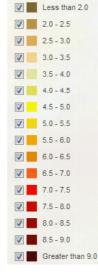
- New power generation sources will change or even threaten the business plan for off-grid rural electrification.
- Such risks need to be governed in the policy framework.
- A rural electrification masterplan must be developed, implemented and followed (Kenya example).
- As usual: No reliable policy framework  $\rightarrow$  no investors.

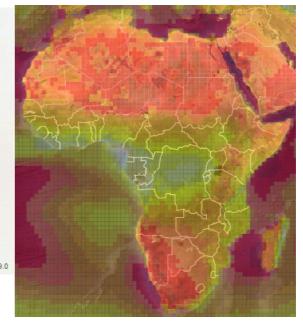






# 7. A FEW WORDS ON CSP






# **Geographical and irradiation requirements for CSP**

- Map shows annual Direct Normal Irradiation (DNI) in kWh/m<sup>2</sup>/day
- CSP needs not only high levels of DNI (>= 2,000 kWh/m²/year considered economically viable) but also flat ground and sufficient water supply









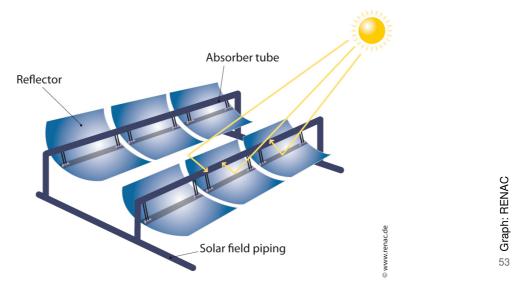


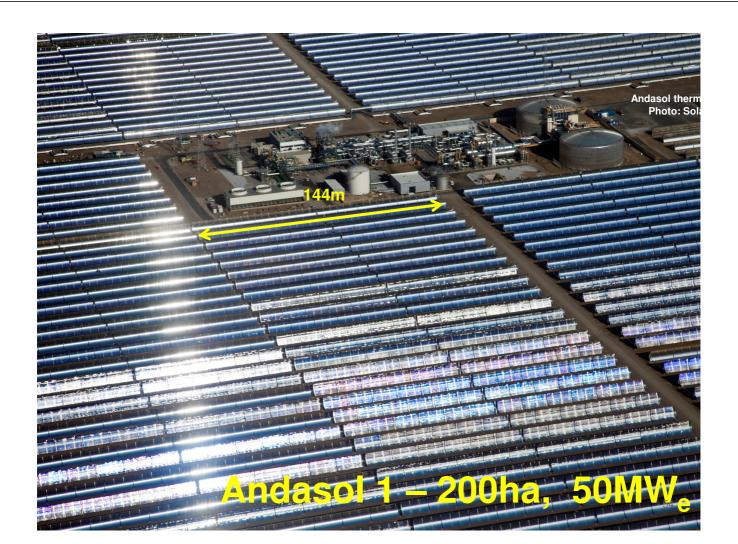
# Parabolic trough power plant

- Operating temperature: 300°C to 500°C
- Concentration Factor 70 90
- Heat transfer fluid: thermal oil, direct steam, molten salt
- Typical power size: 50 to 400 MW<sub>el</sub> (for a solar field for 50 MW<sub>el</sub> over 500,000 m<sup>2</sup> of aperture area)
- High manufacturing quality requirements: System will have to be aligned to track the sun with 0.1° precision!



Photo: Solar Energy Generating System SEGS, California



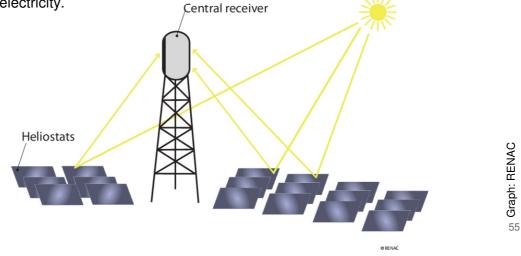



# Parabolic trough collector - principle

 Parabolic mirror tracks the sun in one axis and reflects Direct Normal Irradiation (DNI) on Heat Collecting Element (HCE)












### **Solar tower**

- Solar radiation is reflected from heliostats (large steel reflectors) onto a receiver (heat exchanger) at the top of the solar tower.
- Here the heat is transferred to water to produce steam to drive a steam generator to generate electricity.







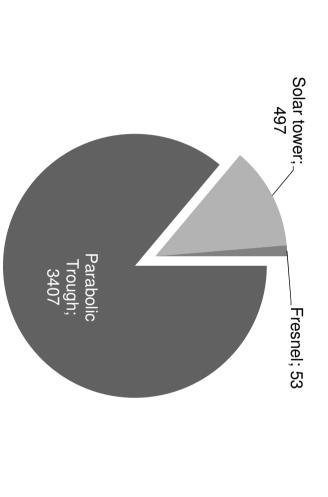


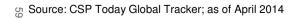



### Linear Fresnel power plant

- Operation as for parabolic troughs.
- A series of mirror strips form a parabola shape. Low cost manufacturing.
- The mirror strips track the sun to optimise solar concentration onto receiver tube.
- Achieve lower temperatures. Suited to industrial heating applications.



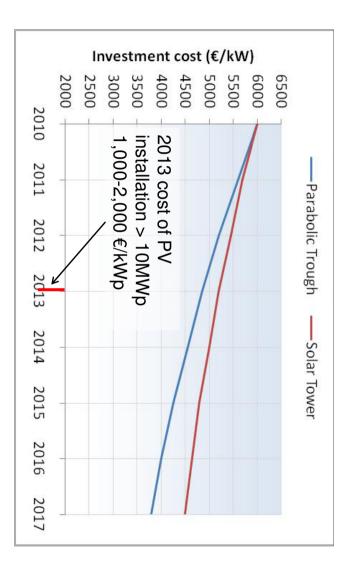







# **CSP** market







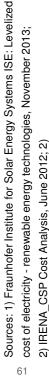

IRENA

# CSP Plants – Costs and cost trends



60 Source: IRENA\_CSP Cost Analysis, June 2012








# **CSP Plants – Costs and cost trends**

- The LCOE of CSP plants varies considerably depending on
  - the technology
  - the location of the plant, i.e. irradiation levels
  - the level of thermal storage, i.e. capacity factors
- Potential further reduction in LCOE of 45-60% predicted by 2025 by IRENA in 2012.

| Technology                                                                           | Estimated LCOE                         |
|--------------------------------------------------------------------------------------|----------------------------------------|
| Parabolic Trough <sup>1)</sup> (DNI: 2,000 – 2,500 kWh/m <sup>2*</sup> a;<br>PR=90%) | 0.15 – 0.20 EUR <sub>2013</sub>        |
| Solar Tower <sup>2)</sup>                                                            | 0.12 – 0.21 EUR <sub>2011</sub> /kWh   |
| PV <sup>1)</sup> (utility scale; 2,000 kWh/m²*a; PR=85%)                             | average: 0.08 EUR <sub>2013</sub> /kWh |









# Thank you very much for your attention!

### **Jens Altevogt**

Renewables Academy (RENAC) Phone +49 30 52 689 58-76 <u>altevogt@renac.de</u> www.renac.de