

Generation Expansion Planning and Renewable Energy Integration initiatives in Namibia

Maxwell Muyambo

Manager: Technical Regulation

Electricity Control Board (ECB)

Namibia

CONTENTS

Introduction / Background

- Namibian Electricity Sector Overview
 - Institutional Framework
 - * Regulatory Framework
 - Electricity Market model
- * Expansion Planning: NIRP
- Renewable Energy (RE) Status
 - * RE Procurement Mechanisms
 - * Private Sector Participation: Projects Supporting IPPs
- * Licensing Status
- * Challenges
- * Conclusion

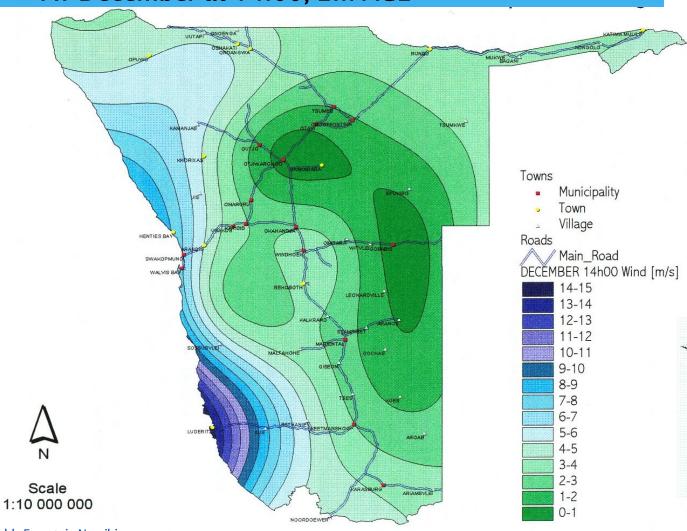
IRENA - 27-09-2012

Background

- Namibia is endowed with abundant renewable energy resources: solar, biomass and wind.
- * Namibian Energy Demand far exceeds Supply
- * There is Urgent need to commercially exploit the RE resources for energy generation
- * Both public and private sectors have a role to play.
- * The biggest challenge is lack of capacity by the market to manage multiple risks
- * Access to Electricity is no longer a Generation Expansion Planning and Renewable Lux Lux bibi but an imperative for development

Background: Namibia's Generation Statistics

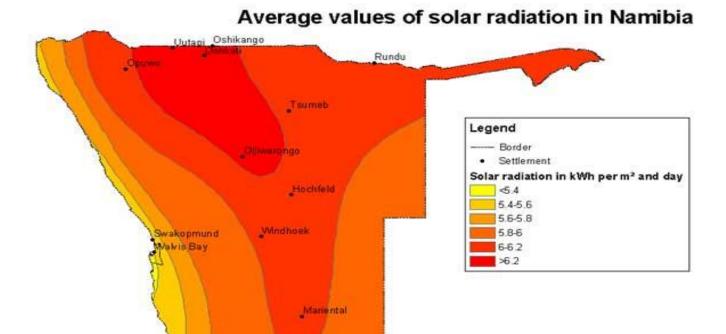
Power		
Station/ Imports	kWh	% Generation
•		
Ruacana	1,130,052	32.7%
Van Eck	33,344	1.0%
Paratus	4,849	0.1%
Total	1,436,502	41.5%
Eskom	702,472	20.3%
Zesco	317,921	9.2%
Zesa	1,002,000	29.0%
Total	2,022,392	58.5%

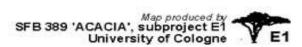

Power Station	Installed Capacity (MW)
Ruacana	249
Van Eck	120
Paratus	24
Anixas	23
Total	416
Maximum Demand	600

Background: Wind Energy Potential

Av December at 14:00, 2m AGL

5


Wind Electricity potential > Current grid capacity


Generation Expansion Planning and Renewable Energy in Namibia - IRENA - 27-09-2012

Source: von Oertzen 1999, REEE1/98

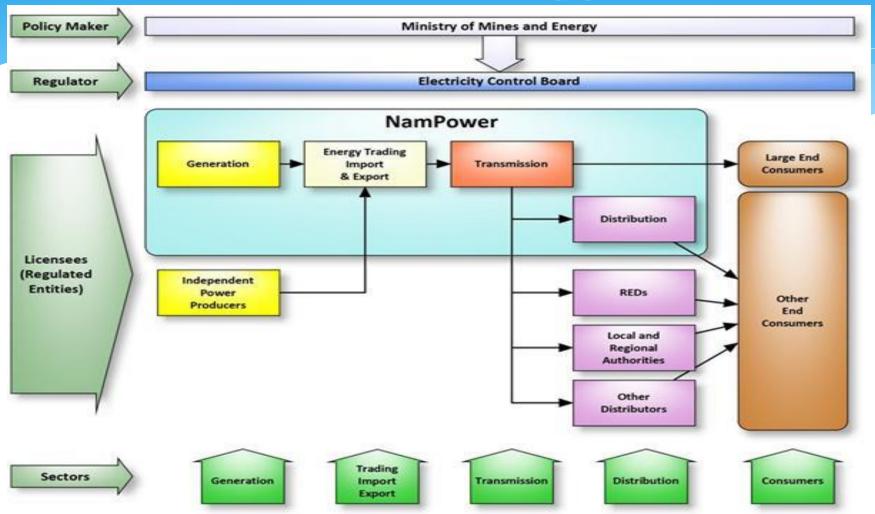
Background: Solar Radiation In Namibia

Keetmanshoop

Deta source: Allas of Namibia Project, 2002, Directorate of Environmental Affairs, Ministry of Environment and Tourism, http://www.dea.met.gov.na.(2003)

250

500 km


1:7.500.000

.üderitz

Institutional Framework

- Ministry of Mines and Energy (MME)
 - Policy Maker
- * Electricity Control Board (ECB)
 - * Policy Implementer
- * Electricity Licensees
 - * Service Providers

Namibia's Electricity Supply Industry

Regulatory Regime: ECB's Mandate

The ECB is on the verge of expanding its regulatory scope from electricity to energy.

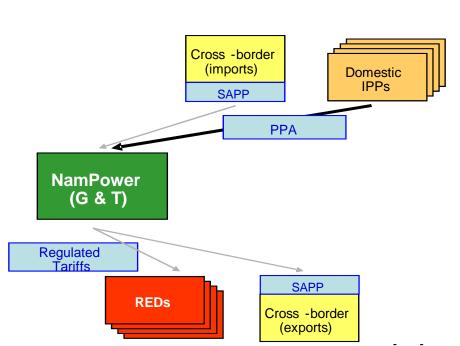
- * Its legal mandate is derived from the Electricity Act (Act 4 of 2007) and envisages:
 - * Exercising control over and regulating the provision, use and consumption of electricity in Namibia;
 - Overseeing the efficient functioning and development of the electricity industry and security of electricity provision;
 - Ensuring a competitive environment in the electricity industry in Namibia
 - Promoting private sector investment in the electricity industry


Regulatory Regime: ECB's Main Regulatory Functions

- Economic functions : Tariff setting (\$)
- * Technical functions: Standards setting
- * Licensing: Issuing and amending
- Monitoring above for compliance
- Mediation: in cases involving licensees and their customers/prospective customers
- Creating level playing field for industry participants (Utilities, IPPs and Investors)

Regulatory Regime: Policy on Tariffs

- The ECB is responsible for tariff setting and approval in consultation with relevant key stakeholders including Gvt
- * Government Policy prescribes that tariffs should be:
 - * Be cost reflective
 - * Be Based on sound economic principles
 - Create a level playing field for all ESI participants
 - Reflect long Run Marginal Cost
- Generation Tariff (Cost Plus) Methodology Developed
- * Cabinet decided that bulk tariffs should be cost reflective in 2011/2012.
 - * Above was achieved


Regulatory Regime: Licensing Procedures

Generation Expansion Planning and Renewable Energy in Namibia -IRENA - 27-09-2012

Old Market Model: Classic Single Buyer

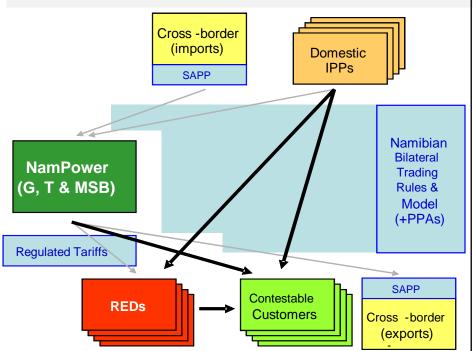
Advantages

- Allows IPP entry (private investment)
- Relatively small structural, transactional and cultural changes
- Clear roles and responsibilities
- Simplified backup and balancing arrangements - NamPower retains responsibility as "supplier of last resort"

Disadvantages

- Conflict of interest for utility
- Centralised Planning and decision -making
- Only one buyer of IPP power resulting in limited contracting options and choices (e.g. currency & commodity risks, size, etc.)
- All funding requirements and contractual commitments will fall in NamPower creating bottlenecks

Risks


- No/limited_market entry by IPPs
- Alternatively, excessive PPA contracting may result in stranded investments
- Contingent liabilities on Government full PPA off-take by the Single Buyer
- <u>Sub-optimal outcomes</u> (contracting, price and dispatch)

New Market Model: Modified Single Buyer - no IPP exports

(non -exclusive central purchasing)

NamPower acts as non -exclusive Single Buyer for domestic trade - IPPs can sell to NamPower , REDs and Contestable Customers. NamPower retains exclusive rights

to cross -border trade.

Advantages

- Reduces need for <u>"independence" of SB</u>
- IPP and Single Buyer <u>risks diversified</u>
- More buyers mean more contractual options and choices
- Improved ability to attract private capital
- No changes in NamPower structure

Disadvantages

- More complex structural, transactional changes necessary
- · Transmission access and pricing
- More sophisticated backup and balancing arrangements
- More complex dispatch, settlement & planning

Risks

- Volume risk vests primarily with NamPower (but reduced by bilaterals)
- Capacity expansion (IPP investment) risk shared by SB & bilateral counterparties
- Fear of allowing IPPs and bilaterals

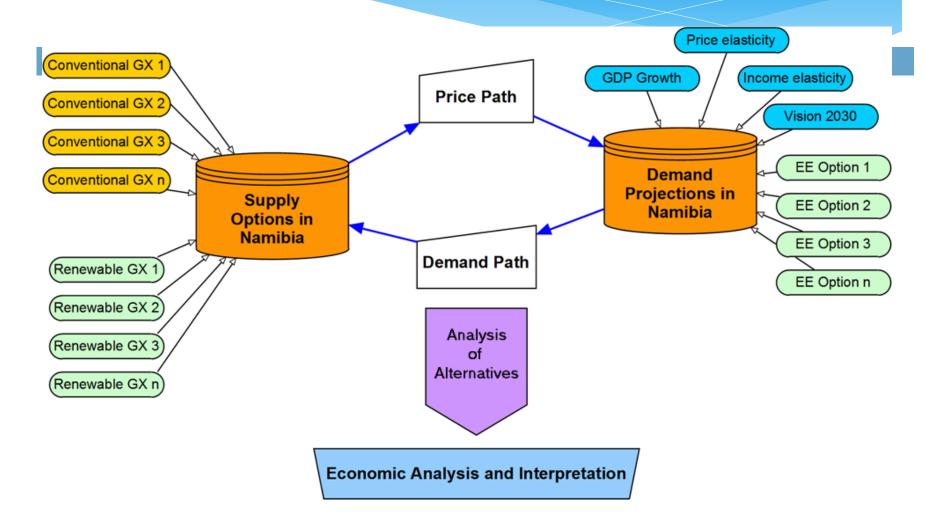
18

Expansion Planning

- Availability of resources should be accompanied by robust exploitation plans and capacity
- Namibia recently completed development of its NIRP
- * The Ministry of Mines and Energy is the custodian of the Plan
- * The ECB was requested to spearhead and lead the plan development.
- * Funded by MME and World Bank
- * Hatch (Canada) was the Consultant

Development Events

Meetings


•	Start of project	July 1, 2011

- Initial Stakeholder Meeting
 July 27, 2011
- SC Meeting No. 1 September 23, 2011
- SC Meeting No. 2 January 26, 2012
- Stakeholder Workshop on the Load Forecast February 22, 2012
- SC Meeting No. 3 & Stakeholder Workshop May 10, 2012
- SC Meeting No. 4 & Stakeholder Workshop
 October 24, 2012
- Task 5 PlanningFebruary 2013
- SC Meeting No. 5 & Stakeholder Workshop early April

NIRP Development Phases

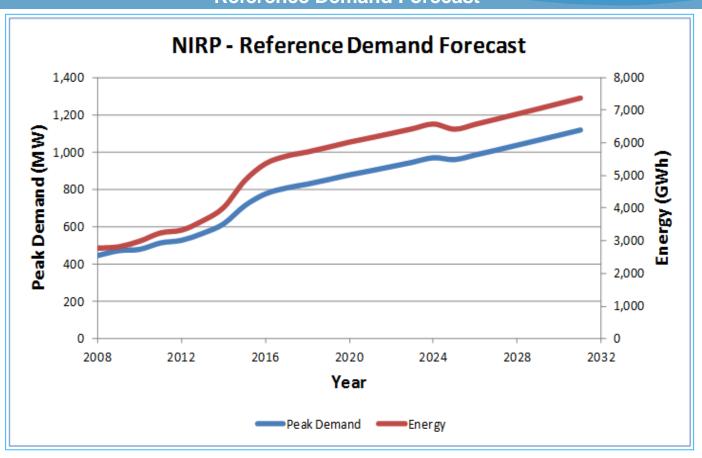
- Development of Economic and Cost Assumptions
- * Development of a Demand Forecast
- Definition and Evaluation of Generation Options, Import Sources and Demand Management Options
- Development and Analysis of Policy Implementation Scenarios
- * Conclusions and Documentation of the Outcome and Results

Simplified NIRP Process

Policy Objectives

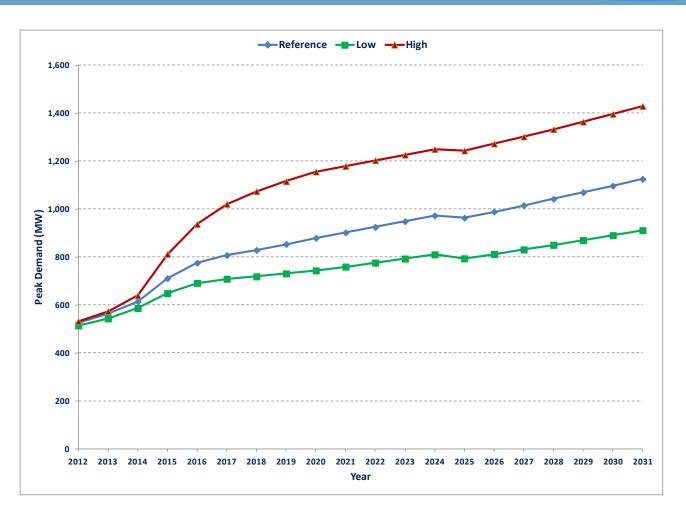
Policy Objectives

- In order to reduce the risk of supply insecurity, the Gvt had initially set targets entailing that by 2010, Namibia should have been able to:
 - meet 100% of the system peak demand with internal resources
 - supply 75% of annual energy demand from local sources
- Supply based on a balance of economically efficient and sustainable sources
- Promoting private investment in the electricity sector
- Establishment of high voltage interconnections to neighbouring countries to increase regional electricity trading capabilities
- Ensuring environmental and socio-economic sustainability
- Electricity prices to be based on sound economic principles and reflect the long run marginal cost of supply


Planning Parameters and Criteria

General and Generation System

- 1. Planning horizon: 2012 2031
- 2. Cost and present worth base -- January 2012
- 3. No escalation for economic analysis
- 4. Currency: Namibia dollar (N\$) 1 US\$ = 7.5 N\$ (then)
- 5. Base discount rate: 10%; alternative cases, 8% and 12%
- 6. Cost of unserved energy: N\$20/kWh
- 7. Duties and taxes are not included in economic study
- 8. Reliability criteria: LOLP (5 Days/Year from 2012 to 2020, 2 Days/Year for the remaining years
- 9. Emissions offset allowance: N\$40/Tonne


Demand Forecast

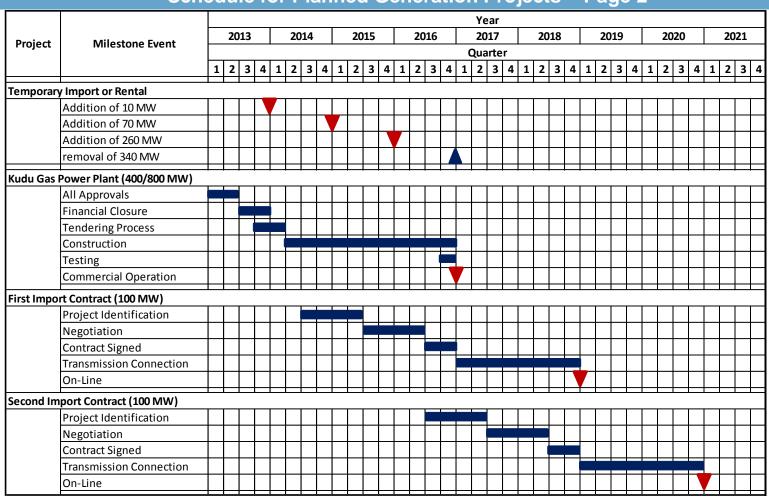
Reference Demand Forecast

Demand Forecast

Peak Load Forecast

Common Addition and Retirement Schedules - Revised

- 1) Paratus: To be retired in January 2017
- 2) Van Eck: Refurbishment (81 MW) by January 2015, to be retired in January 2025
- 3) Ruacana: To be Upgraded (additional 11 MW) by February 2014
- 4) Solar PV: 10 MW in January 2014; 10 MW in August 2014 plus 30 MW in January 2015 from Gvt tender, making a total of 50 MW
- 5) Wind: 44 MW in November 2014
- 6) Zimbabwe Imports: 150 MW Contract expires in October 2014
- 7) Zambia Imports: 50 MW Contract expires at the end of 2020
- 8) Expiration of the current SPSA with ESKOM (up to 450 MW) in January 2016 and start of a new SPSA (up to 550 MW) from that date.


Implementation Plan - Schedule

Schedule for Planned Generation Projects - Page 1

																		Yea	ar															
Type/Drainet	Milestone Event	2013				2014				2015				2016			2017			2018			2019			2020				20)21			
Type/Project	ivillestorie Everit	Quarter																																
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2								3	4	1	2	3	4	1	2	3	4																	
																															<u>l</u>			
Hydro & Rene	ewable Energy Additions																																	
	Upgrade Ruacana, +11 MW																																	
	Solar PV1, 10 MW				,																													
	Solar PV2, 10 MW																																	
	Solar PV3, 30 MW									V																								
	Wind, 44 MW								V																									
Expiration of	Imports																																	
	Contract with ZESA, 150 MW							A																										
	Contract with ZESCO, 50 MW																																	
	SPSA with ESKOM, 200 MW												\mathbb{Z}	7																				
Thermal Units	5																																	
	Retire Paratus, 17 MW																																	
	Refurbish Van Eck, +31 MW									\ \	7																							
	Retire Van Eck, 81 MW (2025)																																	
	. ,																																	İ

Implementation Plan - Schedule

Schedule for Planned Generation Projects – Page 2

RE Status: Current RE Procurement Mechanism

- Set clear policy guidelines on procurement of non conventional /renewable energy sources based primarily on capacity and technology.
- Laid the foundation for migrating from the cumbersome unsolicited bidding approach to competitive bidding for relatively large capacities.
- As an example, the threshold for Solar PV is 0.5 MW. For capacities equal to and above 0.5 MW, competitive bidding is recommended while REFIT is recommended for capacities below 0.5 MW.
- The Regulator issues conditional licenses as a way of encouraging investment

RE Status: Conditional RE Licences Issued to Date

Licensee	Туре	Size	Date	Validity
			Issued	period
				(yrs)
D: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4 4 8 4) 0 /	4 4 07	00
Diaz Wind Power (Pty) Ltd	Wind	44 MW	1-Apr-07	22
Electrawinds (Pty) Ltd	Wind	50 MW	1-Nov-09	20
Innowind (Pty) Ltd	Wind	60 MW	1-Mar-10	20
GreeNam	Solar	30 MW	1-Jun – 11	20
CBEND (Bush Energy Namibia)	Biomass	250 kW	1-May-10	5

IPP Licences Issued to Date

Licensee	Туре	Size	Date Issued	Validity period (yrs)
CBEND (Bush Energy Namibia)	Biomass	250 kW	1-May-10	5
Vizion Energy Resources (Pty) Ltd	Coal (CFB)	300 MW	4-Apr-08	25
Namibia International Mining Company (NIMC)	Diesel CCGT	210 (68) MW	1-Jun-07	20
VTB Capital	Small Hydro	30 MW	15-Jul-07	20
Atlantic Coast Energy Company (Pty)	Coal (pulverized)	700MW	1-Nov-07	25
Diaz Wind Power (Pty) Ltd	Wind	44 MW	1-Apr-07	22
Electrawinds (Pty) Ltd	Wind	50 MW	1-Nov-09	20
Innowind (Pty) Ltd	Wind	60 MW	1-Mar-10	20
GreeNam	Solar	30 MW	1-Jun – 11	20
Total		1254MW		

RE Status: New Solar Licence Applications Received

#	Name of the company	Power station site	Capacity	First Engagement	Application Submitted
1	EcoNam Energy Namibia	Rehoboth	20MW	16 April 2010	6 June 11
2	Innowind Energy Namibia	Walvis Bay	4MW	22 Sept 2010	6 June 11
3	Namibia Solar World	Farm Quinta 976 Gobabis district	40MW	10 May 2011	27 Sept 11
4	Momentous Energy Namibia	Keetmanshoop	20MW	Nov 2010	10 June 11
5	Fvotield Fnergy Holdings	Farm Safier 62 Karibib district	20-240MW	Unknown	7 Nov 2011
6	Atrica Energy (ornoration	Farm 37 Walvis Bay	500MW	9 Aug 2011	10 Aug 11
7	Verasco & Tama Consortium	Khorixas	22MW CSP	4 Aug 2011	31 Oct 2011
8	NamEnergy Solar	Arandis	30MW	Unknown	7 Nov 11
9	Uprise Investment	Keetmanshoop	10MW	Unknown	11 Jan 2012

RE Status: Instruments Supporting IPPs

- * RE Procurement Mechanisms
- * NIRP
- * IPP and Investment Market Framework

RE Procurement Mechanism Project

Project aim was to develop a RE procurement mechanism for Namibia

- * Outcomes
 - REFIT for landfill, small hydro, small wind and biomass (less than 5MW)
 - Tendering for large wind power plants and CSP facilities
 - Net metering for PV
 - Supporting measures like soft loans, tax incentives, etc.
- * ECB Board Approval done
- Implementation Phase
- Implementation Project Steering Committee (PSC) was established
- * Will drive tendering process

RE Status: IPP and Investment Market Framework

- Study commissioned to find ways of attracting IPPs
- * Aimed at Creating a conducive environment for IPPs
- Completed in 2008
- * On ECB Website
- Discussions on Market model and rules with NP started after conclusion of this project

Challenges

- * Stakeholder buy in for the NIRP implementation
- * Maintenance of cost reflectivity to attract private sector participation
- * Lack of RE Uptake Support Mechanisms
 - * Absence of specific RE policy
 - RE included in White Paper on Energy Policy
 - * Lack of enabling RE Framework
 - Refined Procurement mechanism
- * Introduction of special instruments to ensure a greater share of RET in the electricity supply (like quotas, REFIT and others).

Conclusion

There is urgent need for exploiting Namibia generation resources including RE resources

- * Robust planning is essential for security of supply
- * Namibian NIRP is a crucial planning tool for the Namibian ESI.
- * RE Uptake is also essential through:
 - * Specific RE policy to attract RE investment
 - * Robust RE Framework
 - * Subsidies to support RE uptake to mitigate tariff impact
- Need for private sector participation for the NIRP implementation

The End Thank You