

Grid Stability Assessment for Islands

Mirei Isaka IRENA Innovation and Technology Centre Palau, 10 April 2013

Why consider renewable energy for islands?

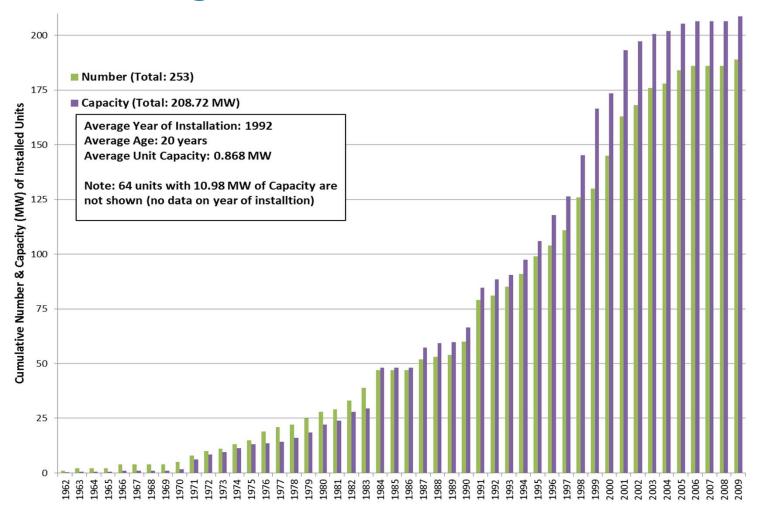
- Islands power cost are high and diesel must be imported
- RE is cheaper:
 - Oil products are comparatively expensive; economies of scale for gas and coal plant are often lacking
 - No exposure to international fossil fuel market shocks
 - RE technology cost are falling worldwide
- **RE is available locally**: wind, geothermal, solar, hydro etc
- **RE is a political fact**: Many islands with ambitious RE objectives
 - Some have completed a transition or are on their way
- RE is part of sustainable island development worldwide
 - Reduce currency account deficits
 - Create jobs and economic development for all
 - Strengthen communities

SO IREN.

KIRIBATT

IRENA engagement for islands RE transition

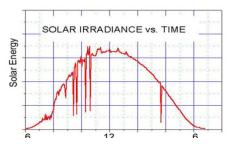
- Starting with the Pacific region in 2012
 - Pacific Leaders Meeting, 13 January 2012, Abu Dhabi (Communiqué)
 - 3 technology expert workshops for international best practice technology and energy transitions (Sydney, Okinawa, Vanuatu)
 - Renewable energy readiness assessment (RRA) (Kiribati)
 - Grid stability assessment in collaboration with PPA
 - Support island energy roadmap development (Tonga, Nauru)
 - Installed a Pacific Coordinator (Ms. 'Apisake Soakai, hosted by SPC, Fiji)
- Identify global best practice: Malta Summit, September, 2012, Malta (Communiqué)
 - In 2013, expanding to Caribbean and other islands regions
- 24 March 2013: Launch of the Global Renewable Energy Islands Network (GREIN) initiative, Auckland
- Various publications document the outcomes and recommendations

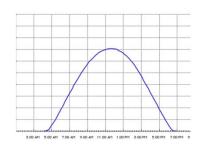


Ongoing island power sector transitions

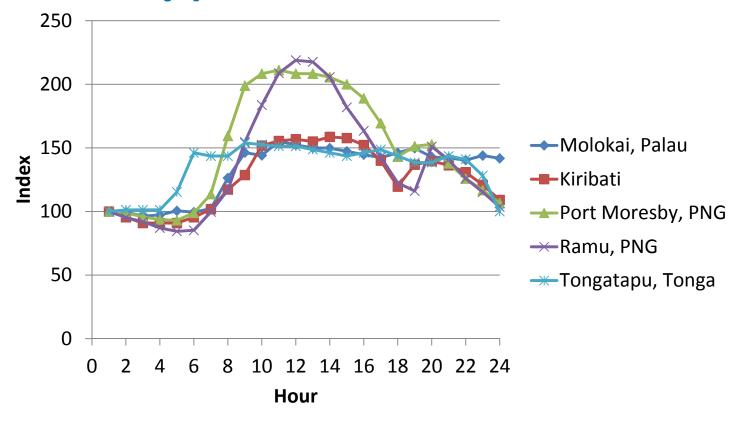
- IRENA analysis suggests hybrid diesel RE power systems are technically feasible with existing diesel generators in the region
 - Retrofit of controllers may be needed in some cases
 - Grid stability issues can be resolved
- Islands worldwide show that transition is possible
 - Iceland (geothermal, hydro), Tokelau (solar, batteries), El Hierro (wind, pumped hydro), Graciosa (wind, PV, batteries), Tonga (PV, wind, wave), Aruba (wind), Fiji (hydro, biomass, wind), Cap Verde (wind, PV)
 - Easier for larger islands (hydropower) and volcanic islands (pumped hydro, geothermal)
 - Coral islands have usually fewer "baseload" opportunities
- IRENA analysis of RE experience across 15 Pacific island countries and territories suggests mixed experiences so far

Cumulative capacity and age profile of current diesel generators (excludes Fiji, PNG)



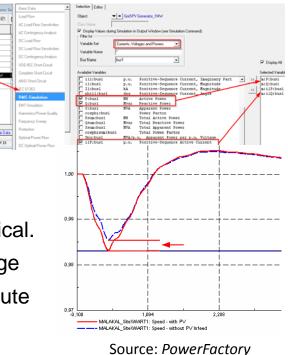

Grid stability assessment for higher shares of RE

- Grid stability becomes an issue when higher shares of variable RE is introduced in existing grids, especially for small island grids
- Wind power can be more "variable" than photovoltaic power on short time scale where stability issues play
- Electricity supply must meet electricity demand at any moment in time
 - If not, blackouts will happen
- Frequency and voltage control are needed to fine-tune this equation
- Rapidly changing renewable power supply could create problems
- A range of technical solutions exist: *grid stability issues do not represent a showstopper for a transition*

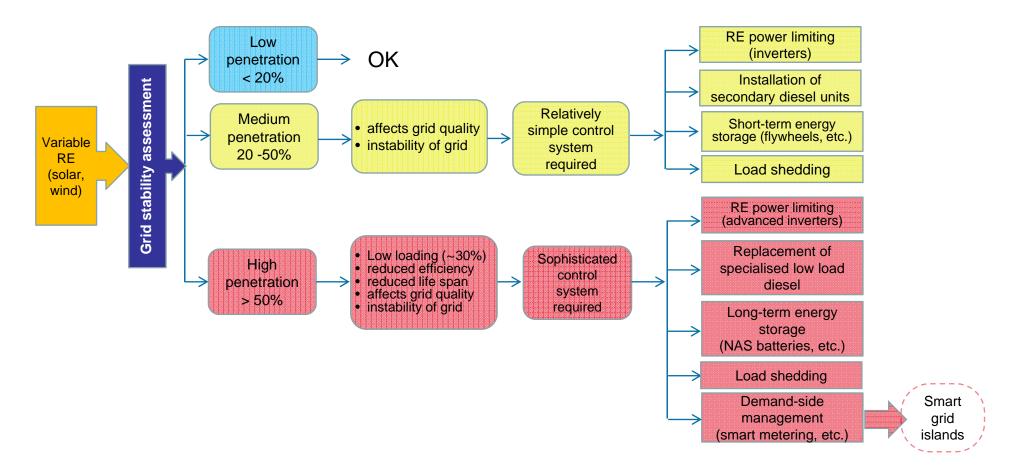


Spatial planning to deal with variability (example Rarotonga)

Example of Pacific load curves Day peak fits well with PV

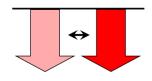


Source: IRENA, 2012

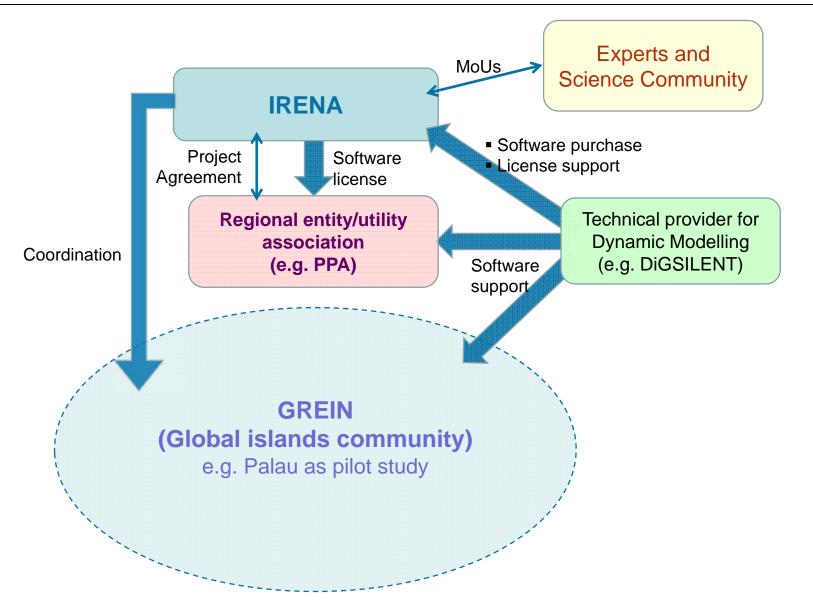

Using models for the assessment of grid stability with a greater share of renewable power

- Models can help assess such potential problems by identifying the levels of RE integration and find solutions ahead of time
 - IRENA has assessed various suitable models
 - *PowerFactory* is one of these models
- Software training: 26-28 February, Bonn
- First pilot study for Palau in collaboration with PPA
 - Workshop 10-12 April, Palau
- For grid stability, *voltage stability* and *frequency stability* are critical.
- Dynamic modelling simulates the effects of frequency and voltage under the varying load conditions by renewables on second/minute scales.
- Modelling requires specific skills and experience.

Strategies depending on the level of RE integration


Strategies to deal with variability International Renewable Energy Agency

- Additive Generation:
 - Application: for rare short-term peak
 - > Possible technology solutions: Secondary/emergency diesel generators.
- Dispatchable Generation:
 - > Application: for frequent short, high peak
 - Possible technology solutions: Advanced controlled (inverters) diesel generators.
- Energy Storage:
 - > Application: daily cyclical balance of load and generation
 - > Possible technology solutions: Decentralised batteries, flywheels.
- Dispatchable Load:
 - > Application: compensate for frequent short, high production peaks
 - Possible technology solutions: Air conditioning.
- Additive Load:
 - > Application: compensate rare production peaks
 - Possible technology solutions: District and local heating/cooling.


Goals of the grid stability assessment

- Outputs of the IRENA study:
 - Provide islands with better understanding of the levels of variable RE integration without affecting the power quality (energy planning).
 - Develop capacity in islands to conduct grid stability assessment.
 - Develop a comprehensive methodology for the grid stability assessment.
 - Provide technological options for grid stability and RE integration.
- Four more case studies in 2013
 - Two in cooperation with Pacific Power Association
 - Two outside the Pacific region
 - Goal is to identify heuristics and to develop a *methodology* for the grid stability assessment

Project Framework

Grid stability methodology

A very first step for an island is to make a commitment on the assessment, considering the resource (cost and capacity)

Steps	Experts and Science Community	IRENA	Regional entity/utility (e.g. PPA)	Islands (e.g. Palau)	Technical provider (e.g. DiGSILENT)
Data collection				Data collection	
Build a model in the <i>PowerFactory</i>			Build the model or support (based on the capacity of an island)	Build the model (based on the capacity of an island)	Software Support
Dynamic model simulation/results		Support	Run the model or support (based on the capacity of an island)	Run the model (based on the capacity of an island)	Software Support
Validation of the model/results	Support	Support	Support	Validate the model/results	Software Support
Recommendations on strategies and technology solutions		Support	Assessment	Assessment	
Quality assurance of recommendation	Confirmation	Support	- - - - - - - - - - - - - - - - - - -		3

THANK YOU !

MIsaka@irena.org

www.irena.org